
django-shopkit Documentation
Release 0.1

Mathijs de Bruin

June 09, 2015





Contents

1 Webshops for perfectionists with deadlines 1

2 Project status 3

3 Compatibility 5

4 Dependencies 7

5 Contents 9
5.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 TODO List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Writing extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Indices and tables 49

Python Module Index 51

i



ii



CHAPTER 1

Webshops for perfectionists with deadlines

Similar to the way that Django is a web application framework, django-shopkit is a webshop application frame-
work. It is, essentially, a toolkit for building customized webshop applications, for ‘perfectionists with deadlines’.

1



django-shopkit Documentation, Release 0.1

2 Chapter 1. Webshops for perfectionists with deadlines



CHAPTER 2

Project status

The current codebase of django-shopkit is currently used to run at least two shops in a production environment,
where it performs just fine. However, there is an apparent lack of documentation, which we hope to fix during the
upcoming months while unrolling subsequent webshop implementations.

If you are interested in using django-shopkit for building your own webshop application, please contact us and
we’ll see how we can work together in helping you understand shopkit’s internals while laying out a documentation
trail in the meanwhile.

3

mailto:mathijs@mathijsfietst.nl


django-shopkit Documentation, Release 0.1

4 Chapter 2. Project status



CHAPTER 3

Compatibility

Django-shopkit is compatible with Django 1.4 and 1.5.

5



django-shopkit Documentation, Release 0.1

6 Chapter 3. Compatibility



CHAPTER 4

Dependencies

The only hard dependency of django-shopkit is Django 1.4 or 1.5. When available, django-shopkit will use
django-mptt (< v0.6) for nested categories and sorl-thumbnail (< v12) for images.

7



django-shopkit Documentation, Release 0.1

8 Chapter 4. Dependencies



CHAPTER 5

Contents

5.1 Getting started

Warning: This getting started guide as well as the basic_webshop demonstration project are well outdated
and probably very much broken by now.
Any supplements to the documentation are much welcomed!

1. Install the app basic_webshop in your environment using PIP (better make sure you’re working in a virtual
environment):

pip install -e git://github.com/dokterbob/basic-webshop.git#egg=basic-webshop

2. Enable the basic_webshop application in INSTALLED_APPS in settings.py:

INSTALLED_APPS = (
...
'shopkit.currency.simple',
'basic_webshop',
...

)

3. Import the webshop settings from basic_webshop in settings.py:

from basic_webshop.django_settings import *

Or add the settings manually:

SHOPKIT_CUSTOMER_MODEL = 'basic_webshop.Customer'
SHOPKIT_PRODUCT_MODEL = 'basic_webshop.Product'
SHOPKIT_CART_MODEL = 'basic_webshop.Cart'
SHOPKIT_CARTITEM_MODEL = 'basic_webshop.CartItem'
SHOPKIT_ORDER_MODEL = 'basic_webshop.Order'
SHOPKIT_ORDERITEM_MODEL = 'basic_webshop.OrderItem'
SHOPKIT_CATEGORY_MODEL = 'basic_webshop.Category'

4. Now include the webshop URL’s in urls.py:

urlpatterns = patterns('',
...
(r'^shop/', include('basic_webshop.urls')),
...

)

5. Update the database by running syncdb:

./manage.py syncdb

9

http://pypi.python.org/pypi/pip/


django-shopkit Documentation, Release 0.1

6. You now have a working basic webshop, start developing in the src directory in your environment. Make
your own branch with:

git checkout -b mywebshop

And edit away! Whenever you want to update your own project with changes in the basic_webshop project,
just do:

git pull origin master
git merge master

5.2 TODO List

These are tasks specified in the source and the documentation which are marked as TODO items and hence are to
be seen as work in progress.

Todo
Add methods for listing all available products (using the in_shop manager) for a given brand.

(The original entry is located in docstring of shopkit.brands.models.BrandBase, line 6.)

Todo
Cache this. It is a slow operation which requires as many queries as the category tree is deep.

(The original entry is located in docstring of shopkit.category.basemodels.NestedCategoryBase.get_parent_list,
line 10.)

Todo
We want a setting allowing us to limit the nestedness of categories. For ‘navigational’ reasons, a number of 3
should be a reasonable default.

(The original entry is located in docstring of shopkit.category, line 11.)

Todo
We should consider adding a manager to OrderBase which can filter on the completed states.

(The original entry is located in docstring of shopkit.core.basemodels.AbstractCustomerBase.get_confirmed_orders,
line 3.)

Todo
Make this lazy object: we should only perform the actual database query when this object is requested from within
template.

(The original entry is located in docstring of shopkit.core.context_processors.cart, line 4.)

Todo
Use aggregation here.

(The original entry is located in docstring of shopkit.core.models.CartBase.get_total_items, line 3.)

Todo
Use aggregation here.

10 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

(The original entry is located in docstring of shopkit.core.models.OrderBase.get_total_items, line 3.)

Todo
Graceously handle errors instead of form_invalid noting that render_to_response was not found.

(The original entry is located in docstring of shopkit.core.views.CartAddBase, line 15.)

Todo
Decide whether or not to make the default success url a configuration value or not.

(The original entry is located in docstring of shopkit.core.views.CartAddBase.get_success_url, line 4.)

Todo
Make an API hook allowing us to check whether a product available for adding it to a cart.

(The original entry is located in docstring of shopkit.core.views.CartAddFormMixin.get_context_data, line 7.)

Todo
Use a setting to define the way in which prices are formatted site-wide. This way we have a simple mechanism
for formatting prices everywhere on the site while leaving everything loosely coupled.

(The original entry is located in docstring of shopkit.currency, line 6.)

Todo
Provide a listing/overview of the types of DiscountMixin’s available, how they should be used and... whether they
have been tested or not.

(The original entry is located in docstring of shopkit.discounts.advanced.models.discount_models, line 3.)

Todo
Unittest this function.

(The original entry is located in docstring of shopkit.discounts.advanced.models.discount_models.CouponDiscountMixin.generate_coupon_code,
line 4.)

Todo
Test this code.

(The original entry is located in docstring of shopkit.discounts.advanced.models.discount_models.DateRangeDiscountMixin.get_valid_discounts,
line 5.)

Todo
Test this! There are likely to be bugs...

(The original entry is located in docstring of shopkit.discounts.advanced.models.discount_models.ManyCategoryDiscountMixin,
line 3.)

Todo
Test this! There are likely to be bugs...

(The original entry is located in docstring of shopkit.discounts.advanced.models.discount_models.ProductDiscountMixin,
line 3.)

5.2. TODO List 11



django-shopkit Documentation, Release 0.1

Todo
Provide a listing/overview of the types of DiscountMixin’s available, how they should be used and... whether they
have been tested or not.

(The original entry is located in docstring of shopkit.discounts.advanced.models.order_models, line 4.)

Todo
Figure out what to do when multiple discounts are valid. Really, some though should be put into this. Maybe
something like a combine_with boolean or other customizable behaviour.

(The original entry is located in docstring of shopkit.discounts, line 3.)

Todo
Write the is_featured manager - and test it.

(The original entry is located in docstring of shopkit.featured.models.FeaturedProductMixin, line 5.)

Todo
Make sure the is_featured manager for this base model uses the featured_order attribute.

(The original entry is located in docstring of shopkit.featured.models.OrderedFeaturedProductMixin, line 3.)

Todo
Add a setting for returning stub images when no default image currently exists.

(The original entry is located in docstring of shopkit.images.admin.ImagesProductAdminMixin.default_image,
line 4.)

Todo
This code is probably a bit too low-level.

(The original entry is located in docstring of shopkit.shipping.advanced.models.order_models.CheapestShippingMixin.get_shipping_method,
line 3.)

Todo
Write documentation here.

(The original entry is located in docstring of shopkit.stock.advanced, line 1.)

Todo
Write more descriptive documentation here about the stock management API’s.

(The original entry is located in docstring of shopkit.stock, line 3.)

Todo
Decide whether this bugger belongs into :module:shopkit.core or whether it is just fine at it’s place right here.

• Pro: We’ll have a generic API for determining the stock state of items.

• Con: It’s bad to have too much code in the core, it is better if modules within django-shopkit have the least
possible knowledge about one another.

12 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

(The original entry is located in docstring of shopkit.stock.models.StockedCartItemBase, line 5.)

5.3 Writing extensions

5.3.1 Extension practises

In order to provide for extensionability, two different mechanism can be applied:

1. Whenever it makes sense to have only one extension module activated at the same time, we should opt for a
combination of subclassing abstract base classes and explicitly refererring to these classes from settings.py. This
mechanism is to be used for things like products, categories, orders and shopping carts. In some situations we
might want to default to a builtin implementation of the abstract base class.

2. For other functionality, such as taxes, shipment, payment or stock management we want to allow for a mecha-
nism similar to the way the Django admin is extended, using a combination of subclassing and explicit regis-
tration of plugin modules.

These approaches have the added advantage that it does not matter where in the module tree extensions are located.
They might are will often reside in different packages or applications, which may not pose a problem in any way.

5.4 Components

It is of the utmost importance to keep core and extension functionality separated.

The criterium for this should be in the dependency tree of the respective modules: core modules should never
depend on extension modules but are free to depend on one another. Similarly: extensions modules can freely
depend on any core modules but should, generally, not depend on one another.

Furthermore: the core API should provide for hooks to allow for any of the extension modules. Hooks should
be added only when an actual need for them exist and not beforehand, as we should keep the code, API and
documentation as simple as possible.

Contents:

5.4.1 Core

The core of django-shopkit framework contains the components considered to be essential in the basis of any kind
of webshop.

As the models and other components contained in this module are meant to be extended, they exposed in the form
of abstract base classes. In an actual webshop application, they should be subclassed and, where applicable, a
reference to them should be made in settings.py so the other components can find them.

Contents:

Admin

shopkit.core.admin

class shopkit.core.admin.PricedItemAdminMixin
Bases: object

Admin mixin for priced items.

5.3. Writing extensions 13

http://docs.djangoproject.com/en/dev/topics/db/models/#abstract-base-classes
http://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin


django-shopkit Documentation, Release 0.1

Base models

shopkit.core.basemodels

class shopkit.core.basemodels.AbstractCustomerBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for customers of the shop.

get_all_orders()
Get all orders by the customer

get_confirmed_orders()
Get all completed orders for this customer

Todo
We should consider adding a manager to OrderBase which can filter on the completed states.

get_latest_order()
Return the lastest confirmed order

class shopkit.core.basemodels.AbstractPricedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for items with a price. This only contains a get_price dummy function yielding a
NotImplementedError. An actual price field is contained in the PricedItemBase class.

This is because we might want to get our prices somewhere else, ie. using some kind of algorithm, web API
or database somewhere.

get_price(**kwargs)
Get price for the current product.

This method _should_ be implemented in a subclass.

class shopkit.core.basemodels.ActiveItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for items which can be activated or deactivated.

class shopkit.core.basemodels.ActiveItemInShopBase(*args, **kwargs)
Bases: shopkit.core.basemodels.ActiveItemBase

This is a subclass of ActiveItemBase with an ActiveItemManager called in_shop returning only
items with active=True.

The main purpose of this class is allowing for items to be enabled or disabled in the shop’s backend.

class shopkit.core.basemodels.DatedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Item for which the add and modification date are automatically tracked.

class shopkit.core.basemodels.NamedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for items with a name.

class shopkit.core.basemodels.NumberedOrderBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for Order with invoice and order numbers.

confirm()
Make sure we set an invoice number upon order confirmation.

generate_invoice_number()
Generates an invoice number for the current order. Should be overridden in subclasses.

14 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

generate_order_number()
Generates an order number for the current order. Should be overridden in subclasses.

save(*args, **kwargs)
Generate an order number upon saving the order.

class shopkit.core.basemodels.OrderedInlineItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

This base class does what, actually, order_with_respect_to should do but (for now) doesn’t implement very
well: ordering of objects with a fk-relation to some class.

As we do not know what the class with the respective relation is, it is important to note that something like
the following is added:

class MyOrderedInline(OrderedInlineItemBase):

<related> = models.ForeignKey(RelatedModel)

class Meta(OrderedInlineItemBase.Meta):
unique_together = ('sort_order', '<related>')

def get_related_ordering(self):
return self.__class__.objects.filter(<related>=self.<related>)

... Or we could simply wait for the Django developers to fix
`order_with_respect_to` once and for all. (Work in progress...
See `Ticket #13 <http://code.djangoproject.com/ticket/13>`.)

static get_next_ordering(related)
Get the next ordering based upon the QuerySet <django.db.models.QuerySet.QuerySet
with related items.

get_related_ordering()
Get a QuerySet <django.db.models.QuerySet.QuerySet with related items to be con-
sidered for calculating the next sort_order.

As we do not know in this base class what the related field(s) are, this raises a NotImplementedError.
It should be subclassed with something like:

return self.objects.filter(<related>=self.<related>)

save()
If no sort_order has been specified, make sure we calculate the it based on the highest available current
sort_order.

class shopkit.core.basemodels.OrderedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for items that have explicit ordering.

clean()
If no sort_order has been specified, make sure we calculate the it based on the highest available current
sort_order.

class shopkit.core.basemodels.PublishDateItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Item with a publish date.

class shopkit.core.basemodels.QuantizedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for items with a quantity field.

5.4. Components 15



django-shopkit Documentation, Release 0.1

Models

shopkit.core.models

class shopkit.core.models.AddressBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for address models.

This base class should be used when defining addresses.

class shopkit.core.models.CartBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

Abstract base class for shopping carts.

add_item(product, quantity=1, **kwargs)
Adds the specified product in the specified quantity to the current shopping Cart. This effectively
creates a CartItem for the Product-Cart combination or updates it when a CartItem already exists.

When kwargs are specified, these are passed along to get_item and signify properties of the CartItem.

Returns added CartItem

classmethod from_request(request)
Get an existing Cart object from the session or return a blank one.

Returns Cart object corresponding with this request

get_item(product, create=True, **kwargs)
Either instantiates and returns a CartItem for the Cart-Product combination or fetches it from the
database. The creation is lazy: the resulting CartItem is not automatically saved.

Parameters

• create – Whether or not to create a new object if no object was found.

• kwargs – If kwargs are specified, these signify filters or instantiation parameters for
getting or creating the item.

get_items()
Gets items from the cart with a quantity > 0.

get_order_line()
Get a string representation of this OrderItem for use in list views.

get_price(**kwargs)
Wraps the get_total_price function.

get_total_items()
Gets the total quantity of products in the shopping cart.

Todo
Use aggregation here.

get_total_price(**kwargs)
Gets the total price for all items in the cart.

remove_item(product, **kwargs)
Remove item from cart.

Returns True if the item was deleted succesfully, False if the item could not be found.

to_request(request)
Store a reference to the current Cart object in the session.

16 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

class shopkit.core.models.CartItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase,
shopkit.core.basemodels.QuantizedItemBase

Abstract base class for shopping cart items.

get_order_line()
Natural (unicode) representation of this cart item in an order overview.

get_parent()
Get the relevant Cart. Used to have a generic API for Carts and Orders.

get_piece_price(**kwargs)
Gets the price per piece for a given quantity of items.

get_price(**kwargs)
Wraps get_total_price().

get_total_price(**kwargs)
Gets the tatal price for the items in the cart.

class shopkit.core.models.CustomerAddressBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for addresses with a relation to a customer, for which the addressee field is automatically set
when saving.

save(**kwargs)
Default the addressee to the full name of the user if none has been specified explicitly.

class shopkit.core.models.CustomerCartBase(*args, **kwargs)
Bases: shopkit.core.models.CartBase

Abstract base class for shopping carts related to a Customer.

classmethod from_request(request)
Get cart from request and associate with customer, if related to the authenticated user.

class shopkit.core.models.CustomerOrderBase(*args, **kwargs)
Bases: shopkit.core.models.OrderBase

Abstract base class for orders with Customer management.

classmethod from_cart(cart)
Make sure we copy the customer from the Cart, if available.

class shopkit.core.models.CustomerPaymentBase(*args, **kwargs)
Bases: shopkit.core.models.PaymentBase

Abstract base class for payment related to a Customer.

class shopkit.core.models.OrderBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase,
shopkit.core.basemodels.DatedItemBase

Abstract base class for orders.

confirm()
Method which performs actions to be taken upon order confirmation.

By default, this method writes a log message and calls the register_confirmation method on all order
items. It also deletes to shopping cart this order was created from.

Subclasses can use this to perform actions such as updating the stock or registering the use of a dis-
count. When overriding, make sure this method calls its supermethods.

When subclassing this method, please make sure you implement proper safety checks in the overrides
of the prepare_confirm() method as this method should not raise errors under normal circumstances
as this could lead to potential data/state inconsistencies.

5.4. Components 17



django-shopkit Documentation, Release 0.1

In general, it makes sense to connect this method to a change in order state such that it is called
automatically. For example:

..todo:: Write a code example here.

classmethod from_cart(cart)
Instantiate an order based on the basis of a shopping cart, copying all the items.

get_items()
Get all order items (with a quantity greater than 0).

get_price(**kwargs)
Wraps the get_total_price function.

get_total_items()
Gets the total quantity of products in the shopping cart.

Todo
Use aggregation here.

get_total_price(**kwargs)
Gets the total price for all items in the order.

prepare_confirm()
Run necessary checks in order to confirm whether an order can be safely confirmed. By default this
method only checks whether or not the order has already been confirmed, but could be potentially
overridden by methods checking the item’s stock etcetera.

Raises AlreadyConfirmedException

save(*args, **kwargs)
Make sure we log a state change where applicable.

class shopkit.core.models.OrderItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase,
shopkit.core.basemodels.QuantizedItemBase

Abstract base class for order items. An OrderItem should, ideally, copy all specific properties from the
shopping cart as an order should not change at all when the objects they relate to change.

confirm()
Register confirmation of the current OrderItem. This can be overridden in subclasses to perform
functionality such as stock keeping or discount usage administration. By default it merely emits a
debug message.

When overriding, be sure to call the superclass.

classmethod from_cartitem(cartitem, order)
Create and populate an order item from a shopping cart item. The result is not automatically saved.

When the CartItem model has extra properties, such as variations, these should be copied over to the
OrderItem in overrides of this function as follows:

class OrderItem(...):
@classmethod
def from_cartitem(cls, cartitem, order):

orderitem = super(OrderItem, cls).from_cartitem(
cartitem, order

)

orderitem.<someproperty> = cartitem.<someproperty>

return orderitem

get_parent()
Get the relevant Order. Used to have a generic API for Carts and Orders.

18 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

get_piece_price(**kwargs)
Gets the price per piece for a given quantity of items.

get_price(**kwargs)
Wraps get_total_price().

get_total_price(**kwargs)
Gets the tatal price for the items in the cart.

class shopkit.core.models.OrderStateChangeBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for logging order state changes.

classmethod get_latest(order)
Get the latest state change for a particular order, or None if no StateChange is available.

class shopkit.core.models.PaymentBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for payments.

class shopkit.core.models.ProductBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

Abstract base class for products in the webshop.

The in_shop property should be a Manager containing all the Product objects which should be enabled in
the shop’s frontend.

class shopkit.core.models.UserCustomerBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractCustomerBase,
django.contrib.auth.models.User

Abstract base class for Customers which can also be Django users.

Managers

shopkit.core.managers

class shopkit.core.managers.ActiveItemManager
Bases: django.db.models.manager.Manager

Manager returning only activated items, ideally for subclasses of AbstractActiveItemBase.

get_query_set()
Filter the original queryset so it returns only items with active=True.

Views

shopkit.core.views

class shopkit.core.views.CartAddBase(**kwargs)
Bases: django.views.generic.base.TemplateResponseMixin,
shopkit.core.views.CartAddFormMixin, django.views.generic.edit.BaseFormView

View for processing POST requests adding items to the shopping cart. Process flow is as follows:

1.User is on a product detail page.

2.User clicks ‘Add to cart’ and (optionally) selects a quantity. This initiates a POST request to the current
view.

3.The current view fetches the cart, checks for the current product in there.

4. (a)If it does, it adds the given quantity to CartItem which has been found.

(b)If it does not, a new CartItem should be created and added to the users Cart.

5.4. Components 19

http://docs.djangoproject.com/en/dev/topics/db/managers/#django.db.models.Manager
http://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.models.User
http://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.TemplateResponseMixin


django-shopkit Documentation, Release 0.1

5.Redirect to the cart view.

Todo
Graceously handle errors instead of form_invalid noting that render_to_response was not found.

form_valid(form)
Form data was valid: add a CartItem to the Cart or increase the number.

..todo:: Refactor this!

get_form_class()
Simply wrap the get_cart_form_class from CartMixin.

get_success_url()
The URL to return to after the form was processed succesfully. This function should be overridden.

Todo
Decide whether or not to make the default success url a configuration value or not.

class shopkit.core.views.CartAddFormMixin
Bases: object

Mixin providing a basic form class for adding items to the shopping cart. It will be added to the context as
cartaddform.

get_cart_form_class()
Simply return the form for adding Items to a Cart.

get_context_data(**kwargs)
Add a cart add form under the name cartaddform to the context, if and only if an object is available
and is a product.

If this is not the case, we should fail silently (perhaps) logging a debug message.

Todo
Make an API hook allowing us to check whether a product available for adding it to a cart.

class shopkit.core.views.InShopViewMixin
Bases: object

Mixin using the in_shop manager rather than the default objects, so that it only uses objects which are
actually enabled in the frontend of the shop.

get_queryset()
Return in_shop.all() for the model.

Forms

shopkit.core.forms

class shopkit.core.forms.CartItemAddForm(data=None, files=None, auto_id=u’id_%s’, pre-
fix=None, initial=None, error_class=<class
‘django.forms.util.ErrorList’>, la-
bel_suffix=u’:’, empty_permitted=False)

Bases: django.forms.forms.Form

Form for adding CartItems to a Cart.

shopkit.core.forms.get_product_choices()
Get available products for shopping cart. This has to be wrapped in a SimpleLazyObject, otherwise Sphinx
will complain in the worst ways.

20 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Settings

shopkit.core.settings

To set the values below from settings.py, prepend their names with SHOPKIT_. For example:

SHOPKIT_PRODUCT_MODEL = 'myapp.MyProduct'

Utils

shopkit.core.utils

shopkit.core.utils.get_model_from_string(model)
Takes a string in the form of appname.Model, (ie. basic_webshop.CartItem) and returns the model class for
it.

Contents:

Fields

shopkit.core.utils.fields

class shopkit.core.utils.fields.MinMaxDecimalField(**kwargs)
Bases: django.db.models.fields.DecimalField

DecimalField subclass which allows specifying a minimum and maximum value. Takes two extra optional
parameters, to be specified as a Decimal or string:

•max_value

•min_value

class shopkit.core.utils.fields.PercentageField(**kwargs)
Bases: shopkit.core.utils.fields.MinMaxDecimalField

Subclass of DecimalField with sensible defaults for percentage discounts:

•max_value=100

•min_value=0

•decimal_places=0

•max_digits=3

Admin

shopkit.core.utils.admin

class shopkit.core.utils.admin.LimitedAdminInlineMixin
Bases: object

InlineAdmin mixin limiting the selection of related items according to criteria which can depend on the
current parent object being edited.

A typical use case would be selecting a subset of related items from other inlines, ie. images, to have some
relation to other inlines.

Use as follows:

class MyInline(LimitedAdminInlineMixin, admin.TabularInline):
def get_filters(self, obj):

return (('<field_name>', dict(<filters>)),)

5.4. Components 21



django-shopkit Documentation, Release 0.1

get_filters(obj)
Return filters for the specified fields. Filters should be in the following format:

(('field_name', {'categories': obj}), ...)

For this to work, we should either override get_filters in a subclass or define a filters property with the
same syntax as this one.

get_formset(request, obj=None, **kwargs)
Make sure we can only select variations that relate to the current item.

static limit_inline_choices(formset, field, empty=False, **filters)
This function fetches the queryset with available choices for a given field and filters it based on the
criteria specified in filters, unless empty=True. In this case, no choices will be made available.

Listeners

shopkit.core.utils.listeners

class shopkit.core.utils.listeners.Listener(**kwargs)
Bases: object

Class-based listeners, based on Django’s class-based generic views. Yay!

Usage:

class MySillyListener(Listener):
def dispatch(self, sender, **kwargs):

# DO SOMETHING
pass

funkysignal.connect(MySillyListener.as_view(), weak=False)

classmethod as_listener(**initkwargs)
Main entry point for a sender-listener process.

Context processors

shopkit.core.context_processors

shopkit.core.context_processors.cart(request)
Request context processor adding the shopping cart to the current context as cart.

Todo
Make this lazy object: we should only perform the actual database query when this object is requested from
within template.

Tests

shopkit.core.tests

class shopkit.core.tests.CoreTestMixin
Bases: object

Base class for testing core webshop functionality. This class should not directly be used, rather it should be
subclassed similar to the way that included model base classes should be subclassed.

make_product()
Abstract function for creating a test product. As the actual properties of Products depend on the classes
actually implementing it, this function must be overridden in subclasses.

22 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

setUp()
This function gets the model classes from settings.py and makes them available as self.cusomter_class,
self.product_class etcetera.

test_basic_product()
Test if we can create and save a simple product.

test_cart()
Create a shopping cart with several products, quantities and prices.

test_cartitem_from_product()
Create a CartItem from a Product.

test_create_usercustomer()
Create a UserCustomer.

test_order()
Create an order on the basis of a shopping cart and a customer object.

test_orderitem_from_cartitem()
Create an OrderItem from a CartItem.

test_orderstate_change_tracking()
Change the state of an order, see if the state change gets logged.

Exceptions

shopkit.core.exceptions

exception shopkit.core.exceptions.AlreadyConfirmedException(order)
Bases: exceptions.Exception

Exception raised when confirmation is attempted for an order which has already been confirmed.

exception shopkit.core.exceptions.ShopKitExceptionBase
Bases: exceptions.Exception

Base class for exception in django-shopkit.

Signals

shopkit.core.signals

Listeners

shopkit.core.listeners

class shopkit.core.listeners.EmailingListener(**kwargs)
Bases: shopkit.core.utils.listeners.Listener

Listener which sends out emails.

create_message(context)
Create an email message.

get_body_template_names()
Returns a list of template names to be used for the request. Must return a list. May not be called if
render_to_response is overridden.

get_context_data()
Context for the message template rendered. Defaults to sender, the current site object and kwargs.

get_recipients()
Get recipients for the message.

5.4. Components 23

http://docs.python.org/2.6/library/exceptions.html#exceptions.Exception
http://docs.python.org/2.6/library/exceptions.html#exceptions.Exception


django-shopkit Documentation, Release 0.1

get_sender()
Sender of the message, defaults to None which imples DEFAULT_FROM_EMAIL.

get_subject_template_names()
Returns a list of template names to be used for the request. Must return a list. May not be called if
render_to_response is overridden.

handler(sender, **kwargs)
Store sender and kwargs attributes on self.

class shopkit.core.listeners.StateChangeListener(**kwargs)
Bases: shopkit.core.utils.listeners.Listener

Listener base class for order status changes.

Example:

OrderPaidListener(StatusChangeListener):
state = order_states.ORDER_STATE_PAID

def handler(self, sender, **kwargs):
# <do something>

dispatch(sender, **kwargs)
The dispatch method is equivlant to the similarly named method in Django’s class based views: it
checks whether or not this signal should be handled at all (whether or not it matches the specified)
state change) and then calls the handle() method.

handler(sender, **kwargs)
The handler performs some actual action upon handling a signal. This must be overridden in subclasses
defining actual listeners.

class shopkit.core.listeners.StateChangeLogger(**kwargs)
Bases: shopkit.core.listeners.StateChangeListener

Debugging listener for order_state_change, logging each and every state change.

handler(sender, **kwargs)
Handle the signal by writing out a debug log message.

class shopkit.core.listeners.TranslatedEmailingListener(**kwargs)
Bases: shopkit.core.listeners.EmailingListener

Email sending listener which switched locale before processing.

get_language(sender, **kwargs)
Return the language we should switch to.

handler(sender, **kwargs)
Handle the signal, wrapping the emailing handler from the base class but changing locale on before-
hand, switching back to the original afterwards.

5.4.2 Price

shopkit.price By default, this extension contains base classes for two different types of pricing:

• Simple pricing gives you an abstract base class that simply adds a price field to the ProductBase class.

• Advanced pricing, allowing several prices to be specified per product, depending on factors such as the date
or the amount of articles. The current structure for this code is very preliminary and mostly demonstrative.

Contents:

24 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Models

class shopkit.price.models.PricedItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

Abstract base class for priced models with a price field. This base class simply has a price field for storing
the price of the item.

get_price(**kwargs)
Returns the price property of the current product.

Simple

shopkit.price.simple As of now this is only a stub module using the base class for priced items found in the core.
However, functionality might be added later which is specific to products, so please use this extension instead of
the core base classes.

Contents:

Models

Advanced

shopkit.price.advanced The model structure in this extension is very preliminary. Ideally, one would want all
ones prices to reside in a single table.

One way to approach this would be using a private function _get_valid for PriceBase subclasses and then im-
plementing a get_valid in PriceBase which calls the _get_valid functions for direct parent classes that inherit
from PriceBase. This could then be collapsed into a single QuerySet using Q objects. But perhaps this is too
complicated. Any comments welcomed.

Models

shopkit.price.advanced.models

class shopkit.price.advanced.models.DateRangedPriceMixin(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for a price that is only valid within a given date range.

classmethod get_valid_prices(date=None, *args, **kwargs)
Return valid prices for a specified date, taking the current date if no date is specified.

class shopkit.price.advanced.models.PriceBase(*args, **kwargs)
Bases: shopkit.price.models.PricedItemBase

Abstract base class for price models, exposing a method to get the cheapest price under given conditions.

Be sure to add the proper unique_together contraints to subclasses implementing an actual price model.

classmethod get_cheapest(**kwargs)
Get the cheapest available price under given conditions.

classmethod get_valid_prices(**kwargs)
Get valid prices (as a QuerySet), given certain constraints. By default, this returns all prices available.
Where applicable, subclasses might filter this result by:

•Product

•Date

•Quantity

5.4. Components 25



django-shopkit Documentation, Release 0.1

class shopkit.price.advanced.models.ProductPriceMixin(*args, **kwargs)
Bases: django.db.models.base.Model

Represents prices available for a specific product product.

classmethod get_valid_prices(product, *args, **kwargs)
Return valid prices for a specified product

class shopkit.price.advanced.models.QuantifiedPriceMixin(*args, **kwargs)
Bases: shopkit.core.basemodels.QuantizedItemBase

Base class for a price that is only valid above a certain quantity.

classmethod get_valid_prices(quantity=1, *args, **kwargs)
Get valid prices for a given quantity of items. If no quantity is given, 1 is assumed.

Settings

shopkit.price.advanced.settings

Admin

shopkit.price.advanced.admin

class shopkit.price.advanced.admin.PriceInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline price admin for prices belonging to products.

formset
alias of PriceInlineFormSet

Forms

shopkit.price.advanced.forms

class shopkit.price.advanced.forms.PriceInlineFormSet(data=None, files=None,
instance=None,
save_as_new=False, pre-
fix=None, queryset=None,
**kwargs)

Bases: django.forms.models.BaseInlineFormSet

Formset which makes sure that at least one price is filled in.

clean()
Raise a ValidationError if no Price forms are filled in.

Tests

shopkit.price.advanced.tests

class shopkit.price.advanced.tests.AdvancedPriceTestMixin
Bases: object

Base class for testing advanced prices.

setUp()
This makes the Price class from the SHOPKIT_PRICE_MODEL available as self.price_class for
unittests to make use of.

26 Chapter 5. Contents

http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#django.forms.models.BaseInlineFormSet


django-shopkit Documentation, Release 0.1

5.4.3 Shipping

Generic code for calculating shipping costs and methods.

Advanced

shopkit.shipping.advanced Advanced shipping allows for multiple shipping methods and algorithms.

Models

shopkit.shipping.advanced.models

class shopkit.shipping.advanced.models.shipping_models.ItemShippingMethodMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for shipping methods which process individual items and not whole orders.

classmethod get_cheapest(**kwargs)
Return the cheapest shipping method or None.

If item_cost is not specified, an attempt will be made to call get_cheapest on the superclass. If this
method does not exist in the superclass, None is returned.

classmethod get_valid_methods(item_methods=None, **kwargs)
We want to be able to discriminate between methods valid for the whole item and those valid for item
items.

Parameters item_methods – When True, only items for which item_cost has been speci-
fied are valid. When False, only items which have no item_cost specified are let through.

class shopkit.shipping.advanced.models.shipping_models.MinimumItemAmountShippingMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Shipping mixin for methods valid only from a specified order amount.

classmethod get_valid_methods(item_price=None, **kwargs)
Return shipping methods for which the item price is above a minimum price or ones for which no
minimal item price has been specified.

Parameters item_price – Price for the current OrderItem, used to determine valid ship-
ping methods.

class shopkit.shipping.advanced.models.shipping_models.MinimumOrderAmountShippingMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Shipping mixin for methods valid only from a specified order amount.

classmethod get_valid_methods(order_price=None, **kwargs)
Return shipping methods for which the order price is above the minimal order price or ones for which
no minimal order price has been specified.

Parameters order_price – Price for the current order, used to determine valid shipping
methods.

class shopkit.shipping.advanced.models.shipping_models.OrderShippingMethodMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for shipping methods which process whole orders and not individual items.

classmethod get_cheapest(**kwargs)
Return the cheapest order shipping method if order_methods is specified. Return whatever it is the
superclass returns otherwise.

5.4. Components 27



django-shopkit Documentation, Release 0.1

classmethod get_valid_methods(order_methods=None, **kwargs)
We want to be able to discriminate between methods valid for the whole order and those valid for order
items.

Parameters order_methods – When True, only items for which order_cost has been
specified are valid. When False, only items which have no order_cost specified are let
through.

class shopkit.shipping.advanced.models.shipping_models.ShippingMethodBase(*args,
**kwargs)

Bases: django.db.models.base.Model

Base class for shipping methods.

get_cost(**kwargs)
Get the total shipping costs resulting from this ShippingMethod. This method should be implemented
by subclasses of :class:ShippingMethodBase.

classmethod get_valid_methods(**kwargs)
Get all valid shipping methods for a given kwargs. By default, all methods are valid.

is_valid(**kwargs)
Check to see whether an individual method is valid under the given circumstances.

class shopkit.shipping.advanced.models.order_models.AutomaticShippingMixin
Bases: object

Mixin class for shippable items for which the choice of method is automatic.

get_shipping_method(**kwargs)
Return the shipping method used for the current item. This method should be overridden in subclasses.
It should return None if shipping is not applicable for this item and hence, the shipping costs should
be 0.

class shopkit.shipping.advanced.models.order_models.CheapestShippingMixin
Bases: shopkit.shipping.advanced.models.order_models.AutomaticShippingMixin

Shippable item which defaults to using the

get_shipping_method(**kwargs)
Return the cheapest shipping method or an order or item.

Todo
This code is probably a bit too low-level.

class shopkit.shipping.advanced.models.order_models.PersistentShippedItemBase(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin class for Order‘s and OrderItem‘s for which the shipping method is stored persistently upon calling
the update_shipping method.

update_shipping()
Call update_shipping on the superclass and get the shipping method, store the resulting Shipping-
Method on the shipping_method property.

class shopkit.shipping.advanced.models.order_models.ShippedCartItemMixin(*args,
**kwargs)

Bases: shopkit.shipping.advanced.models.order_models.CalculatedShippingItemMixin,
shopkit.shipping.advanced.models.order_models.CheapestShippingMixin,
shopkit.shipping.basemodels.ShippedCartItemBase

Base class for shopping cart items which are shippable.

class shopkit.shipping.advanced.models.order_models.ShippedCartMixin(*args,
**kwargs)

Bases: shopkit.shipping.advanced.models.order_models.CalculatedShippingOrderMixin,

28 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

shopkit.shipping.advanced.models.order_models.CheapestShippingMixin,
shopkit.shipping.basemodels.ShippedCartBase

Base class for shopping carts with shippable items.

class shopkit.shipping.advanced.models.order_models.ShippedOrderItemMixin(*args,
**kwargs)

Bases: shopkit.shipping.advanced.models.order_models.PersistentShippedItemBase,
shopkit.shipping.advanced.models.order_models.CalculatedShippingItemMixin,
shopkit.shipping.advanced.models.order_models.CheapestShippingMixin,
shopkit.shipping.basemodels.ShippedOrderItemBase

Base class for orderitems which can have individual shipping costs applied to them.

class shopkit.shipping.advanced.models.order_models.ShippedOrderMixin(*args,
**kwargs)

Bases: shopkit.shipping.advanced.models.order_models.PersistentShippedItemBase,
shopkit.shipping.basemodels.ShippedOrderBase, shopkit.shipping.advanced.models.order_models.CalculatedShippingOrderMixin,
shopkit.shipping.advanced.models.order_models.CheapestShippingMixin

Base class for orders with a shipping_method.

Settings

Admin

Settings

shopkit.shipping.settings

Models

shopkit.shipping.models

class shopkit.shipping.models.ShippableCustomerMixin
Bases: object

Customer Mixin class for shops in which orders make use of a shipping address.

get_recent_shipping()
Return the most recent shipping address

Base models

shopkit.shipping.basemodels

class shopkit.shipping.basemodels.ShippedCartBase(*args, **kwargs)
Bases: shopkit.shipping.basemodels.ShippedItemBase

Mixin class for shopping carts with shipping costs associated with them.

get_order_shipping_costs(**kwargs)
Get the shipping costs for this order. Must be implemented in subclasses.

get_total_shipping_costs(**kwargs)
Get the total shipping cost for this Cart, summing up the shipping costs for the whole order and those
for individual items (where applicable).

class shopkit.shipping.basemodels.ShippedCartItemBase(*args, **kwargs)
Bases: shopkit.shipping.basemodels.ShippedItemBase

Mixin class for CartItemz‘s with a function get_shipping_costs().

5.4. Components 29



django-shopkit Documentation, Release 0.1

class shopkit.shipping.basemodels.ShippedItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

Base class for shippable items.

get_price(**kwargs)
Get the price with shipping costs applied.

get_price_without_shipping(**kwargs)
Get the price without shipping costs.

get_shipping_costs(**kwargs)
Return the most sensible shipping cost associated with this item. By default, it returns the total ship-
ping cost as yielded by get_total_shipping_costs.

get_total_shipping_costs(**kwargs)
Return the total shipping applicable for this item. Must be implemented in subclasses.

class shopkit.shipping.basemodels.ShippedOrderBase(*args, **kwargs)
Bases: shopkit.shipping.basemodels.ShippedItemBase

Mixin class for orders with shipping costs associated with them.

get_order_shipping_costs(**kwargs)
Get the shipping costs for this order.

get_total_shipping_costs(**kwargs)
Get the total shipping cost for this Cart, summing up the shipping costs for the whole order and those
for individual items (where applicable).

update_shipping()
Update the shipping costs for order and order items.

class shopkit.shipping.basemodels.ShippedOrderItemBase(*args, **kwargs)
Bases: shopkit.shipping.basemodels.ShippedItemBase

Mixin class for OrderItem‘s with shipping costs associated with them.

get_shipping_costs(**kwargs)
Return the shipping costs for this item.

update_shipping()
Update shipping costs - does not save the object.

5.4.4 Category

shopkit.category Django-shopkit, by default, contains base classes for two kinds of categories:

• Simple categories, which define a base class for products that belong to exactly one category.

• Advanced categories, that belong to zero or more categories.

Furthermore, generic abstract base models are defined for ‘normal’ categories and for nested categories, allowing
for the hierarchical categorization of products.

Todo
We want a setting allowing us to limit the nestedness of categories. For ‘navigational’ reasons, a number of 3
should be a reasonable default.

Contents:

30 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Base models

class shopkit.category.basemodels.CategoryBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for a category.

The in_shop property should be a Manager containing all the items which should be enabled in the shop’s
frontend.

classmethod get_categories()
Gets all the available categories.

classmethod get_main_categories()
Gets the main categories, which for unnested categories implies all of them. This method exists purely
for uniformity reasons.

get_products()
Get all active products for the current category.

class shopkit.category.basemodels.NestedCategoryBase(*args, **kwargs)
Bases: shopkit.category.basemodels.CategoryBase

Abstract base class for a nested category.

classmethod get_main_categories()
Gets the main categories; the ones which have no parent.

get_parent_list(reversed=False)
Return a list of all parent categories of the current category.

By default it lists the categories from parent to child, ie.:

[<categoryt>, <subcategory>, <subsubcategory>, ...]

If the argument reversed evaluates to True, the list runs in reverse order. This saves an extra reverse
operation.

Todo
Cache this. It is a slow operation which requires as many queries as the category tree is deep.

get_products()
Get all active products for the current category.

For performance reasons, and added control, this only returns only products explicitly associated to
this category - as opposed to listing also products in subcategories of the current category.

This would take a lot more requests and is probably not what we should wish for.

get_subcategories()
Gets the subcategories for the current category.

class shopkit.category.basemodels.MPTTCategoryBase(*args, **kwargs)
Bases: mptt.models.MPTTModel, shopkit.category.basemodels.NestedCategoryBase

classmethod get_main_categories()
Gets the main categories; the ones which have no parent.

get_products()
Get all active products for the current category.

As opposed to the original function in the base class, this also includes products in subcategories of
the current category object.

get_subcategories()
Gets the subcategories for the current category.

5.4. Components 31

http://docs.djangoproject.com/en/dev/topics/db/managers/#django.db.models.Manager
http://django-mptt.github.com/django-mptt/mptt.models.html#mptt.models.MPTTModel


django-shopkit Documentation, Release 0.1

Settings

shopkit.category.settings

To set the values below from settings.py, prepend their names with SHOPKIT_. For example:

SHOPKIT_CATEGORY_MODEL = 'myapp.MyCategory'

Tests

shopkit.category.tests

class shopkit.category.tests.CategoryTestMixinBase
Bases: object

Base class for testing categories.

make_category()
Abstract function for creating a test category. As the actual properties of Products depend on the
classes actually implementing it, this function must be overridden in subclasses.

setUp()
We want to have the category class available in self.

test_basic_category()
Test if we can make and save a simple category.

Simple

shopkit.category.simple Simple category support, allowing products to only belong to a single category.

Models

class shopkit.category.simple.models.CategorizedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Advanced base class for a simple categorized item, belonging to only once single category.

Views

class shopkit.category.simple.views.CategoriesMixin
Bases: object

View Mixin providing a list of categories.

get_context_data(**kwargs)
Adds the available categories to the context as categories.

Tests

class shopkit.category.simple.tests.CategoryTestMixin
Bases: shopkit.category.tests.CategoryTestMixinBase

Test base class for simple categories.

Advanced

shopkit.category.advanced

32 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Models

class shopkit.category.advanced.models.CategorizedItemBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for an advanced categorized item, possibly belonging to multiple categories.

Views

Tests

class shopkit.category.advanced.tests.CategoryTestMixin
Bases: shopkit.category.tests.CategoryTestMixinBase

Test base class for advanced categories.

5.4.5 Value Added Tax

VAT Extension, implementing Value Added Tax mechanisms for products, carts and orders.

Simple

shopkit.vat.simple

Models

class shopkit.vat.simple.models.VATItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

This item extends any priced item (subclasses of AbstractPricedItemBase) with functions that yield
the prices with and without VAT. In doing this, it might be imported in what order the base classes for the
VAT’ed item are listed. Feedback about this is welcomed.

..todo:: Write unittests for this piece of code.

get_price(with_vat=True, **kwargs)
If with_vat=False, simply returns the original price. Otherwise it takes the result of get_vat() and adds
it to the original price.

get_price_with_vat(**kwargs)
Gets the price including VAT. This is a wrapper function around get_price as to allow for specific
prices to be queried from within templates.

get_price_without_vat(**kwargs)
Gets the price excluding VAT. This is a wrapper function around get_price as to allow for specific
prices to be queried from within templates.

get_vat(**kwargs)
Gets the amount of VAT for the current item.

Views

Settings

Advanced

shopkit.vat.advanced

5.4. Components 33



django-shopkit Documentation, Release 0.1

Models

Views

Settings

5.4.6 Currency

shopkit.currency Currency handling for django-shopkit. It comes in a simple and an advanced variant. The simple
variant assumes a single currency throughout the webshop project, advanced currency support allows for using
multiple currencies throughout the site.

Todo
Use a setting to define the way in which prices are formatted site-wide. This way we have a simple mechanism
for formatting prices everywhere on the site while leaving everything loosely coupled.

Contents:

Simple

shopkit.currency.simple Simple currency support. This assumes a single currency throughout the webshop, con-
figured in settings.py as SHOPKIT_CURRENCY_DEFAULT.

Contents:

Settings

Utils

shopkit.currency.simple.utils.format_price(amount)
Format the given float-like object in the current locale.

Fields

class shopkit.currency.simple.fields.PriceField(**kwargs)
Bases: django.db.models.fields.DecimalField

A PriceField is simply a subclass of DecimalField with common defaults set by CURRENCY_MAX_DIGITS
and CURRENCY_DECIMALS.

Advanced

shopkit.currency.advanced Contents:

Models

Views

Settings

5.4.7 Configurable

Configurable products with several properties and variants.

34 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Simple

shopkit.configurable.simple

Models

Views

Settings

Advanced

shopkit.configurable.advanced

Models

Views

Settings

5.4.8 Variations

shopkit.variations Base classes for Product, Cart and OrderItem models which have several variations. The base
classes have no natural properties or fields, these have to be defined in the application which uses the variations.

Within the models module, two kinds of models are defined:

1. Unordered variations.

2. Ordered variations - for which an integer ordering has to be specified.

Contents:

Admin

shopkit.variations.admin

class shopkit.variations.admin.ProductVariationInline(parent_model, admin_site)
Bases: django.contrib.admin.options.TabularInline

Inline admin for product variations.

Models

shopkit.variations.models

class shopkit.variations.models.OrderedProductVariationBase(*args, **kwargs)
Bases: shopkit.variations.models.ProductVariationBase,
shopkit.core.basemodels.OrderedInlineItemBase

Base class for ordered product variations.

classmethod get_default_variation()
By default, this returns the first variation according to the default sortorder.

get_related_ordering()
Related objects for generating default ordering.

5.4. Components 35



django-shopkit Documentation, Release 0.1

class shopkit.variations.models.ProductVariationBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for variations of a product.

classmethod get_default_variation()
Return the default variation selected for this product. As there is no inherent way to order these, this
function should be overridden in classes actually implementing the variation model.

This might, for example, be overriden by taking the first product in the list or by some function
selecting a specific variation as default.

class shopkit.variations.models.VariationCartItemMixin(*args, **kwargs)
Bases: django.db.models.base.Model, shopkit.variations.models.VariationItemBase

Mixin class for cart items which can have variations.

class shopkit.variations.models.VariationItemBase
Bases: object

Abstract base class for (order/cart) items with variations.

class shopkit.variations.models.VariationOrderItemMixin(*args, **kwargs)
Bases: django.db.models.base.Model, shopkit.variations.models.VariationItemBase

Mixin class for order items which can have variations.

classmethod from_cartitem(cartitem, order)
Create OrderItem from CartItem.

Settings

shopkit.variations.settings

5.4.9 Images

shopkit.images Images extension, allowing us to attach images to products using an ImageField. It provides a
ProductImageBase abstract base class and a setting for defining the actual class implementing product images.
This extension also provides an AdminInline class for updating product images from within the Admin interface
and an Admin Mixin for showing thumbnails from within the list view.

This extension is loosely coupled to the new sorl-thumbnail - it will scale thumbnails when Sorl is available but
should work just fine without it.

Contents:

Admin

shopkit.images.admin

class shopkit.images.admin.ImagesProductAdminMixin
Bases: object

Mixin class adding a function for easily displaying images in the product list display of the admin. To use
this, simply add ‘default_image’ to the list_display tuple.

Like such:

ProductAdmin(ImagesProductAdminMixin, <Base classes>):
list_display = ('name', 'default_image')

default_image(obj)
Renders the default image for display in the admin list. Makes a thumbnail if sorl-thumbnail is avail-
able.

36 Chapter 5. Contents

https://github.com/sorl/sorl-thumbnail


django-shopkit Documentation, Release 0.1

Todo
Add a setting for returning stub images when no default image currently exists.

class shopkit.images.admin.ProductImageInline(parent_model, admin_site)
Bases: sorl.thumbnail.admin.current.AdminImageMixin,
django.contrib.admin.options.TabularInline

Inline admin for product images.

Models

shopkit.images.models

class shopkit.images.models.ImagesProductMixin
Bases: object

Mixin representing a product with multiple images associated to it.

get_default_image()
By default, this returns the first image according to whatever sortorder is used.

class shopkit.images.models.OrderedProductImageBase(*args, **kwargs)
Bases: shopkit.images.models.ProductImageBase, shopkit.core.basemodels.OrderedInlineItemBase

Base class for explicitly ordere image relating to a product.

get_related_ordering()
Related objects for generating default ordering.

class shopkit.images.models.ProductImageBase(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for image relating to a product.

Settings

shopkit.images.settings

5.4.10 Discounts

shopkit.discounts Base classes for discounts.

Todo
Figure out what to do when multiple discounts are valid. Really, some though should be put into this. Maybe
something like a combine_with boolean or other customizable behaviour.

Contents:

Base models

shopkit.discounts.basemodels

class shopkit.discounts.basemodels.DiscountedCartBase(*args, **kwargs)
Bases: shopkit.discounts.basemodels.DiscountedItemBase

Base class for shopping carts which can have discounts applied to them.

5.4. Components 37



django-shopkit Documentation, Release 0.1

get_order_discount(**kwargs)
Calculate the whole order discount, as distinct from discount that apply to specific order items. This
method must be implemented elsewhere.

get_total_discount(**kwargs)
Return the total discount. This consists of the sum of discounts applicable to orders and the discounts
applicable to items.

class shopkit.discounts.basemodels.DiscountedCartItemBase(*args, **kwargs)
Bases: shopkit.discounts.basemodels.DiscountedItemBase

Base class for shopping cart items which can have discounts applied to them.

get_item_discount(**kwargs)
Calculate the order item discount, as distinct from the whole order discount. This method must be
implemented in elsewhere.

get_total_discount(**kwargs)
Return the total discount for the CartItem, which is simply a wrapper around get_item_discount.

class shopkit.discounts.basemodels.DiscountedItemBase(*args, **kwargs)
Bases: shopkit.core.basemodels.AbstractPricedItemBase

Mixin class for discounted items.

get_discount(**kwargs)
Return the most sensible discount related to this item. By default, it returns the total discount applica-
ble as yielded by get_total_discount.

..todo:: The mechanism making sure the discount is never higher than the original price is imple-
mented here as well as in get_total_discount of DiscountedCartBase and DiscountedOrderBase.

get_piece_discount(**kwargs)
Get the discount per piece. Must be implemented in subclasses.

get_piece_price_with_discount(**kwargs)
Get the piece price with the discount applied.

get_piece_price_without_discount(**kwargs)
The price per piece without discount. Wrapper around the get_piece_price method of the superclass.

get_price(**kwargs)
Get the price with the discount applied.

get_price_without_discount(**kwargs)
The price without discount. Wrapper around the get_price method of the superclass.

get_total_discount(**kwargs)
Return the total discount applicable for this item. Must be implemented in subclasses.

class shopkit.discounts.basemodels.DiscountedOrderBase(*args, **kwargs)
Bases: shopkit.discounts.basemodels.DiscountedItemBase

Base class for orders which can have discounts applied to them. This stores rather than calculates the
discounts for order persistence.

get_order_discount()
Return the discount for this order. This basically returns the order_discount property. To recalcu-
late/update this value, call the update_discount method.

get_total_discount(**kwargs)
Return the total discount. This consists of the sum of discounts applicable to orders and the discounts
applicable to items.

update_discount()
Update discounts for order and order items

38 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

class shopkit.discounts.basemodels.DiscountedOrderItemBase(*args, **kwargs)
Bases: shopkit.discounts.basemodels.DiscountedItemBase

Base class for order items which can have discounts applied to them.

get_item_discount(**kwargs)
Return the discount for this item. This basically returns the discount property. To recalculate/update
this value, call the update_discount method.

get_total_discount(**kwargs)
Return the total discount for the CartItem, which is simply a wrapper around get_item_discount.

update_discount()
Update the discount

Settings

shopkit.discounts.settings

Advanced discounts

shopkit.discounts.advanced Contents:

Admin

shopkit.discounts.advanced.admin

Models

shopkit.discounts.advanced.models Model base and mixin classes for building discount model and logic.

Todo
Provide a listing/overview of the types of DiscountMixin’s available, how they should be used and... whether they
have been tested or not.

class shopkit.discounts.advanced.models.discount_models.AccountedUseDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin class for discounts for which the number of uses is accounted.

classmethod register_use(qs, count=1)
Register count uses of discounts in queryset qs.

class shopkit.discounts.advanced.models.discount_models.CategoryDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin defining discounts based on a single category.

classmethod get_valid_discounts(**kwargs)
Return valid discounts for a specified product

class shopkit.discounts.advanced.models.discount_models.CouponDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Discount based on a specified coupon code.

5.4. Components 39



django-shopkit Documentation, Release 0.1

static generate_coupon_code()
Generate a coupon code of COUPON_LENGHT characters consisting of the characters in
COUPON_CHARACTERS.

Todo
Unittest this function.

classmethod get_valid_discounts(coupon_code=None, **kwargs)
Return only items for which no coupon code has been set or ones for which the current coupon code
matches that of the discounts.

class shopkit.discounts.advanced.models.discount_models.DateRangeDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for discount which are only valid within a given date range.

classmethod get_valid_discounts(**kwargs)
Return valid discounts for a specified date, taking the current date if no date is specified. When no
start or end date are specified, a discount defaults to be valid.

Todo
Test this code.

class shopkit.discounts.advanced.models.discount_models.DiscountBase(*args,
**kwargs)

Bases: django.db.models.base.Model

Base class for discounts.

classmethod get_all_discounts()
Get all discounts, whether valid or not.

get_discount(**kwargs)
Get the total amount of discount produced by this Discount. This method should be implemented by
subclasses of :class:DiscountBase.

classmethod get_valid_discounts(**kwargs)
Get all valid discount objects for a given kwargs. By default, all discounts are invalid.

is_valid(**kwargs)
Check to see whether an individual discount is valid under the given circumstances.

class shopkit.discounts.advanced.models.discount_models.ItemDiscountAmountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for absolute amount discounts, valid only for the particular items in this order.

get_discount(**kwargs)
Get the total amount of discount for the current item.

classmethod get_valid_discounts(**kwargs)
We want to be able to discriminate between discounts valid for the whole order and those valid for
order items.

Parameters item_discounts – When True, only items for which item_amount has been
specified are valid. When False, only items which have no item_amount specified are let
through.

class shopkit.discounts.advanced.models.discount_models.ItemDiscountPercentageMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for percentual discounts, valid only for the particular items in this order.

40 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

get_discount(**kwargs)
Get the total amount of discount for the current item.

classmethod get_valid_discounts(**kwargs)
We want to be able to discriminate between discounts valid for the whole order and those valid for
order items.

Parameters item_discounts – When True, only items for which item_amount has been
specified are valid. When False, only items which have no item_amount specified are let
through.

class shopkit.discounts.advanced.models.discount_models.LimitedUseDiscountMixin(*args,
**kwargs)

Bases: shopkit.discounts.advanced.models.discount_models.AccountedUseDiscountMixin

Mixin class for discounts which can only be used a limited number of times.

get_uses_left()
Return the amount of uses left.

classmethod get_valid_discounts(**kwargs)
Return currently valid discounts: ones for which either no use limit has been set or for which the
amount of uses lies under the limit.

class shopkit.discounts.advanced.models.discount_models.ManyCategoryDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin defining discounts based on a collection of categories.

Todo
Test this! There are likely to be bugs...

classmethod get_valid_discounts(**kwargs)
Return valid discounts for a specified product

class shopkit.discounts.advanced.models.discount_models.ManyProductDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin defining discounts based on products.

classmethod get_valid_discounts(**kwargs)
Return valid discounts for a specified product

class shopkit.discounts.advanced.models.discount_models.OrderDiscountAmountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for absolute amount discounts which act on the total price for an order.

get_discount(**kwargs)
Get the total amount of discount for the current item.

classmethod get_valid_discounts(**kwargs)
We want to be able to discriminate between discounts valid for the whole order and those valid for
order items.

Parameters order_discounts – When True, only items for which order_amount has
been specified are valid. When False, only items which have no order_amount specified
are let through.

class shopkit.discounts.advanced.models.discount_models.OrderDiscountPercentageMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin for discounts which apply as a percentage from the total order amount.

5.4. Components 41



django-shopkit Documentation, Release 0.1

get_discount(**kwargs)
Get the total amount of discount for the current item.

classmethod get_valid_discounts(**kwargs)
We want to be able to discriminate between discounts valid for the whole order and those valid for
order items.

Parameters order_discounts – When True, only items for which order_amount has
been specified are valid. When False, only items which have no order_amount specified
are let through.

class shopkit.discounts.advanced.models.discount_models.ProductDiscountMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin defining a discount valid for a single product.

Todo
Test this! There are likely to be bugs...

classmethod get_valid_discounts(**kwargs)
Return valid discounts for a specified product

Model base and mixin classes for carts and orders with calculated discounts.

Todo
Provide a listing/overview of the types of DiscountMixin’s available, how they should be used and... whether they
have been tested or not.

class shopkit.discounts.advanced.models.order_models.AccountedDiscountedItemMixin
Bases: object

Model mixin class for orders for which the use is automatically accounted upon confirmation.

confirm()
Register discount usage.

class shopkit.discounts.advanced.models.order_models.CalculatedDiscountMixin
Bases: object

Base class for items for which the discount is calculated using a Discount model.

get_valid_discounts(**kwargs)
Return valid discounts for the given arguments.

class shopkit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin
Bases: shopkit.discounts.advanced.models.order_models.CalculatedDiscountMixin

Mixin class for discounted objects for which an item discount can be calculated by calling
get_order_discount and valid discounts can be obtained by calling get_valid_discounts.

get_item_discount(**kwargs)
Get the total discount for this OrderItem.

get_piece_discount(**kwargs)
Get the total discount per piece for this OrderItem.

get_valid_discounts(**kwargs)
Return valid discounts for the current order.

class shopkit.discounts.advanced.models.order_models.CalculatedOrderDiscountMixin
Bases: shopkit.discounts.advanced.models.order_models.CalculatedDiscountMixin

Mixin class for discounted objects for which an order discount can be calculated by calling
get_order_discount and valid discounts can be obtained by calling get_valid_discounts.

42 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

get_order_discount(**kwargs)
Get the discount specific for this Order.

get_valid_discounts(**kwargs)
Return valid discounts for the current order.

class shopkit.discounts.advanced.models.order_models.DiscountCouponItemMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Model mixin class for order or cart items for which discounts are calculated based on a coupon code.

get_valid_discounts(**kwargs)
Return valid discounts for the current item.

class shopkit.discounts.advanced.models.order_models.DiscountCouponMixin(*args,
**kwargs)

Bases: django.db.models.base.Model

Model mixin class for orders or cart for which discounts are calculated based on a given coupon code.

get_valid_discounts(**kwargs)
Return valid discounts for the current order.

class shopkit.discounts.advanced.models.order_models.DiscountedCartItemMixin(*args,
**kwargs)

Bases: shopkit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin,
shopkit.discounts.basemodels.DiscountedCartItemBase

Mixin class for Cart objects which have their discount calculated.

class shopkit.discounts.advanced.models.order_models.DiscountedCartMixin(*args,
**kwargs)

Bases: shopkit.discounts.advanced.models.order_models.CalculatedOrderDiscountMixin,
shopkit.discounts.basemodels.DiscountedCartBase

Mixin class for Cart objects which have their discount calculated.

class shopkit.discounts.advanced.models.order_models.DiscountedOrderItemMixin(*args,
**kwargs)

Bases: shopkit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin,
shopkit.discounts.advanced.models.order_models.PersistentDiscountedItemBase,
shopkit.discounts.basemodels.DiscountedOrderItemBase

Mixin class for OrderItem objects which have their discount calculated.

class shopkit.discounts.advanced.models.order_models.DiscountedOrderMixin(*args,
**kwargs)

Bases: shopkit.discounts.advanced.models.order_models.PersistentDiscountedItemBase,
shopkit.discounts.basemodels.DiscountedOrderBase, shopkit.discounts.advanced.models.order_models.CalculatedOrderDiscountMixin

Mixin class for Order objects which have their discount calculated.

class shopkit.discounts.advanced.models.order_models.PersistentDiscountedItemBase(*args,
**kwargs)

Bases: django.db.models.base.Model

Mixin class for Order‘s and OrderItem‘s for which calculated discounts are persistently stored in a discounts
property upon calling the update_discount method.

update_discount()
Call update_discount on the superclass to calculate the amount of discount, then store valid Discount
objects for this order item.

5.4.11 Stock

shopkit.stock Support for stock management for items in the shop.

5.4. Components 43



django-shopkit Documentation, Release 0.1

Todo
Write more descriptive documentation here about the stock management API’s.

Contents:

Models

class shopkit.stock.models.StockedCartBase
Bases: object

Base class for shopping carts for which stock is kept.

add_item(product, quantity=1, **kwargs)
Attempt to add item to cart.

This method will raise a NoStockAvailableException when no stock items are available.

class shopkit.stock.models.StockedCartItemBase
Bases: object

Base class for cart items for which the stock can be maintained. By default the is_available method returns
True, this method can be overridden in subclassed to provide for more extended functionality.

Todo
Decide whether this bugger belongs into :module:shopkit.core or whether it is just fine at it’s place right
here.

•Pro: We’ll have a generic API for determining the stock state of items.

•Con: It’s bad to have too much code in the core, it is better if modules within django-shopkit have the
least possible knowledge about one another.

is_available(quantity)
The is_available method can be used to determine whether a cart item is eligible to be saved or not.

class shopkit.stock.models.StockedItemBase
Bases: object

Generic base class for CartItem‘s or OrderItem‘s for which the stock is represented by a stocked item
somehow.

get_stocked_item()
Get the StockedItemMixin subclass instance whose is_available method should determine
whether we are out of stock.

This method should be overridden in order to be able to specify whether the cart item is available or
not.

is_available(quantity)
Determine whether or not this item is available.

class shopkit.stock.models.StockedOrderBase
Bases: object

Mixin base class for Order‘s with items for which stock is kept.

check_stock()
Check the stock for all items in this order.

class shopkit.stock.models.StockedOrderItemBase
Bases: object

Mixin base class for OrderItem‘s containing items for which stock is kept.

44 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

check_stock()
Check whether the stock for the current order item is available. This should be called right before
register_confirmation.

confirm()
Before registering confirmation, first make sure enough stock is available. This should have already
been checked when adding the product to the shopping cart but who knows: somebody might have
already bought the product in the meanwhile.

For this to work well, it is important that this register_confirmation function is called before that of
discounts and other possible accounting functions.

prepare_confirm()
Extend confirmation preparation by checking whether stock is available for this order.

Raises NoStockAvailableException

Exceptions

exception shopkit.stock.exceptions.NoStockAvailableException(item)
Bases: shopkit.core.exceptions.ShopKitExceptionBase

Exception raised by the save method of StockedCartItemMixinBase when no stock is available for
the current item.

Simple

shopkit.stock.simple Simple stock management: StockedItemMixin‘s will have a stock property which is
a SmallPositiveIntegerField used to provide not an exact stock count, rather then a choice from few
options used to determine whether an item is available or not.

Contents:

Settings

Models

class shopkit.stock.simple.models.StockedCartItemMixin
Bases: shopkit.stock.models.StockedItemBase, shopkit.stock.models.StockedCartItemBase

Mixin class for CartItem‘s containing items for which stock is kept.

class shopkit.stock.simple.models.StockedCartMixin
Bases: shopkit.stock.models.StockedCartBase

Mixin class for Cart‘s containing items for which stock is kept.

class shopkit.stock.simple.models.StockedItemMixin(*args, **kwargs)
Bases: django.db.models.base.Model, shopkit.stock.models.StockedItemBase

Item with a simple stock selection mechanism: the possible options for the available stock field signify
certain stock states, some of which correspond to an item being orderable.

This could be associated with a Product, a Variation or some other property that pertains to the specific state
of CartItemBase subclasses.

is_available(quantity=None)
Method used to determine whether or not the current item is in an orderable state.

class shopkit.stock.simple.models.StockedOrderItemMixin
Bases: shopkit.stock.models.StockedItemBase, shopkit.stock.models.StockedOrderItemBase

Mixin class for OrderItem‘s containing items for which stock is kept.

5.4. Components 45

http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.PositiveSmallIntegerField


django-shopkit Documentation, Release 0.1

class shopkit.stock.simple.models.StockedOrderMixin
Bases: shopkit.stock.models.StockedOrderBase

Mixin class for Order‘s containing items for which stock is kept.

Advanced

shopkit.stock.advanced

Todo
Write documentation here.

Models

shopkit.stock.advanced.models

class shopkit.stock.advanced.models.StockedCartItemMixin
Bases: shopkit.stock.models.StockedItemBase, shopkit.stock.models.StockedCartItemBase

Mixin class for CartItem‘s containing items for which stock is kept.

class shopkit.stock.advanced.models.StockedCartMixin
Bases: shopkit.stock.models.StockedCartBase

Mixin class for Cart‘s containing items for which stock is kept.

class shopkit.stock.advanced.models.StockedItemMixin(*args, **kwargs)
Bases: django.db.models.base.Model, shopkit.stock.models.StockedItemBase

Item for which stock is kept in an integer stock field.

is_available(quantity)
Method used to determine whether or not the current item is in an orderable state.

class shopkit.stock.advanced.models.StockedOrderItemMixin
Bases: shopkit.stock.models.StockedItemBase, shopkit.stock.models.StockedOrderItemBase

Mixin class for OrderItem‘s containing items for which stock is kept.

confirm()
Register lowering of the current item’s stock.

class shopkit.stock.advanced.models.StockedOrderMixin
Bases: shopkit.stock.models.StockedOrderBase

Mixin class for Order‘s containing items for which stock is kept.

Settings

shopkit.stock.advanced.settings

Tests

shopkit.stock.advanced.tests

5.4.12 Related products

shopkit.related Simple extension to allow for products to products to relate to one another.

Contents:

46 Chapter 5. Contents



django-shopkit Documentation, Release 0.1

Models

shopkit.related.models

class shopkit.related.models.RelatedProductsMixin(*args, **kwargs)
Bases: django.db.models.base.Model

Mixin to allow for relating products to one another.

Settings

shopkit.related.settings

5.4.13 Brand management

shopkit.brands Simple extension to allow for products to have brands.

Contents:

Models

shopkit.brands.models

class shopkit.brands.models.BrandBase(*args, **kwargs)
Bases: django.db.models.base.Model

Abstract base class for brands. Use like this:

class Brand(BrandBase, OrderedItemBase, NamedItemBase):
pass

Todo
Add methods for listing all available products (using the in_shop manager) for a given brand.

class shopkit.brands.models.BrandedProductMixin(*args, **kwargs)
Bases: django.db.models.base.Model

Mixin for product classes with a relation to brand.

Settings

shopkit.brands.settings

5.4.14 Featured products

shopkit.featured Base classes for featured products and ordered featured products in the webshop.

Contents:

Models

shopkit.featured.models

5.4. Components 47



django-shopkit Documentation, Release 0.1

class shopkit.featured.models.FeaturedProductMixin(*args, **kwargs)
Bases: django.db.models.base.Model

Mixin for products which have a boolean featured property and an is_featured manager, filtering the items
from the in_shop manager so that only featured items are returned.

Todo
Write the is_featured manager - and test it.

class shopkit.featured.models.OrderedFeaturedProductMixin(*args, **kwargs)
Bases: shopkit.featured.models.FeaturedProductMixin

Mixin for ordered featured products.

Todo
Make sure the is_featured manager for this base model uses the featured_order attribute.

48 Chapter 5. Contents



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

Last update: June 09, 2015

49



django-shopkit Documentation, Release 0.1

50 Chapter 6. Indices and tables



Python Module Index

b
shopkit.brands, 47
shopkit.brands.models, 47
shopkit.brands.settings, 47

c
shopkit.category, 30
shopkit.category.advanced, 32
shopkit.category.advanced.models, 33
shopkit.category.advanced.tests, 33
shopkit.category.advanced.views, 33
shopkit.category.basemodels, 31
shopkit.category.settings, 32
shopkit.category.simple, 32
shopkit.category.simple.models, 32
shopkit.category.simple.tests, 32
shopkit.category.simple.views, 32
shopkit.category.tests, 32
shopkit.configurable, 34
shopkit.configurable.advanced, 35
shopkit.configurable.advanced.models,

35
shopkit.configurable.advanced.settings,

35
shopkit.configurable.advanced.views,

35
shopkit.configurable.simple, 35
shopkit.configurable.simple.models, 35
shopkit.configurable.simple.settings,

35
shopkit.configurable.simple.views, 35
shopkit.core, 13
shopkit.core.admin, 13
shopkit.core.basemodels, 14
shopkit.core.context_processors, 22
shopkit.core.exceptions, 23
shopkit.core.forms, 20
shopkit.core.listeners, 23
shopkit.core.managers, 19
shopkit.core.models, 16
shopkit.core.settings, 21
shopkit.core.signals, 23
shopkit.core.tests, 22
shopkit.core.utils, 21
shopkit.core.utils.admin, 21

shopkit.core.utils.fields, 21
shopkit.core.utils.listeners, 22
shopkit.core.views, 19
shopkit.currency, 34
shopkit.currency.advanced, 34
shopkit.currency.advanced.models, 34
shopkit.currency.advanced.settings, 34
shopkit.currency.advanced.views, 34
shopkit.currency.simple, 34
shopkit.currency.simple.fields, 34
shopkit.currency.simple.settings, 34
shopkit.currency.simple.utils, 34

d
shopkit.discounts, 37
shopkit.discounts.advanced, 39
shopkit.discounts.advanced.admin, 39
shopkit.discounts.advanced.models, 39
shopkit.discounts.advanced.models.discount_models,

39
shopkit.discounts.advanced.models.order_models,

42
shopkit.discounts.basemodels, 37
shopkit.discounts.settings, 39

f
shopkit.featured, 47
shopkit.featured.models, 47

i
shopkit.images, 36
shopkit.images.admin, 36
shopkit.images.models, 37
shopkit.images.settings, 37

p
shopkit.price, 24
shopkit.price.advanced, 25
shopkit.price.advanced.admin, 26
shopkit.price.advanced.forms, 26
shopkit.price.advanced.models, 25
shopkit.price.advanced.settings, 26
shopkit.price.advanced.tests, 26
shopkit.price.models, 25
shopkit.price.simple, 25

51



django-shopkit Documentation, Release 0.1

shopkit.price.simple.models, 25

r
shopkit.related, 46
shopkit.related.models, 47
shopkit.related.settings, 47

s
shopkit.shipping, 27
shopkit.shipping.advanced, 27
shopkit.shipping.advanced.admin, 29
shopkit.shipping.advanced.models, 27
shopkit.shipping.advanced.models.order_models,

28
shopkit.shipping.advanced.models.shipping_models,

27
shopkit.shipping.advanced.settings, 29
shopkit.shipping.basemodels, 29
shopkit.shipping.models, 29
shopkit.shipping.settings, 29
shopkit.stock, 43
shopkit.stock.advanced, 46
shopkit.stock.advanced.models, 46
shopkit.stock.advanced.settings, 46
shopkit.stock.advanced.tests, 46
shopkit.stock.exceptions, 45
shopkit.stock.models, 44
shopkit.stock.simple, 45
shopkit.stock.simple.models, 45
shopkit.stock.simple.settings, 45

v
shopkit.variations, 35
shopkit.variations.admin, 35
shopkit.variations.models, 35
shopkit.variations.settings, 36
shopkit.vat, 33
shopkit.vat.advanced, 33
shopkit.vat.advanced.models, 34
shopkit.vat.advanced.settings, 34
shopkit.vat.advanced.views, 34
shopkit.vat.simple, 33
shopkit.vat.simple.models, 33
shopkit.vat.simple.settings, 33
shopkit.vat.simple.views, 33

52 Python Module Index



Index

A
AbstractCustomerBase (class in shop-

kit.core.basemodels), 14
AbstractPricedItemBase (class in shop-

kit.core.basemodels), 14
AccountedDiscountedItemMixin (class in shop-

kit.discounts.advanced.models.order_models),
42

AccountedUseDiscountMixin (class in shop-
kit.discounts.advanced.models.discount_models),
39

ActiveItemBase (class in shopkit.core.basemodels), 14
ActiveItemInShopBase (class in shop-

kit.core.basemodels), 14
ActiveItemManager (class in shopkit.core.managers),

19
add_item() (shopkit.core.models.CartBase method), 16
add_item() (shopkit.stock.models.StockedCartBase

method), 44
AddressBase (class in shopkit.core.models), 16
AdvancedPriceTestMixin (class in shop-

kit.price.advanced.tests), 26
AlreadyConfirmedException, 23
as_listener() (shopkit.core.utils.listeners.Listener class

method), 22
AutomaticShippingMixin (class in shop-

kit.shipping.advanced.models.order_models),
28

B
BrandBase (class in shopkit.brands.models), 47
BrandedProductMixin (class in shop-

kit.brands.models), 47

C
CalculatedDiscountMixin (class in shop-

kit.discounts.advanced.models.order_models),
42

CalculatedItemDiscountMixin (class in shop-
kit.discounts.advanced.models.order_models),
42

CalculatedOrderDiscountMixin (class in shop-
kit.discounts.advanced.models.order_models),
42

cart() (in module shopkit.core.context_processors), 22

CartAddBase (class in shopkit.core.views), 19
CartAddFormMixin (class in shopkit.core.views), 20
CartBase (class in shopkit.core.models), 16
CartItemAddForm (class in shopkit.core.forms), 20
CartItemBase (class in shopkit.core.models), 16
CategoriesMixin (class in shop-

kit.category.simple.views), 32
CategorizedItemBase (class in shop-

kit.category.advanced.models), 33
CategorizedItemBase (class in shop-

kit.category.simple.models), 32
CategoryBase (class in shopkit.category.basemodels),

31
CategoryDiscountMixin (class in shop-

kit.discounts.advanced.models.discount_models),
39

CategoryTestMixin (class in shop-
kit.category.advanced.tests), 33

CategoryTestMixin (class in shop-
kit.category.simple.tests), 32

CategoryTestMixinBase (class in shop-
kit.category.tests), 32

CheapestShippingMixin (class in shop-
kit.shipping.advanced.models.order_models),
28

check_stock() (shopkit.stock.models.StockedOrderBase
method), 44

check_stock() (shopkit.stock.models.StockedOrderItemBase
method), 44

clean() (shopkit.core.basemodels.OrderedItemBase
method), 15

clean() (shopkit.price.advanced.forms.PriceInlineFormSet
method), 26

confirm() (shopkit.core.basemodels.NumberedOrderBase
method), 14

confirm() (shopkit.core.models.OrderBase method), 17
confirm() (shopkit.core.models.OrderItemBase

method), 18
confirm() (shopkit.discounts.advanced.models.order_models.AccountedDiscountedItemMixin

method), 42
confirm() (shopkit.stock.advanced.models.StockedOrderItemMixin

method), 46
confirm() (shopkit.stock.models.StockedOrderItemBase

method), 45
CoreTestMixin (class in shopkit.core.tests), 22

53



django-shopkit Documentation, Release 0.1

CouponDiscountMixin (class in shop-
kit.discounts.advanced.models.discount_models),
39

create_message() (shop-
kit.core.listeners.EmailingListener method),
23

CustomerAddressBase (class in shopkit.core.models),
17

CustomerCartBase (class in shopkit.core.models), 17
CustomerOrderBase (class in shopkit.core.models), 17
CustomerPaymentBase (class in shopkit.core.models),

17

D
DatedItemBase (class in shopkit.core.basemodels), 14
DateRangeDiscountMixin (class in shop-

kit.discounts.advanced.models.discount_models),
40

DateRangedPriceMixin (class in shop-
kit.price.advanced.models), 25

default_image() (shop-
kit.images.admin.ImagesProductAdminMixin
method), 36

DiscountBase (class in shop-
kit.discounts.advanced.models.discount_models),
40

DiscountCouponItemMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

DiscountCouponMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

DiscountedCartBase (class in shop-
kit.discounts.basemodels), 37

DiscountedCartItemBase (class in shop-
kit.discounts.basemodels), 38

DiscountedCartItemMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

DiscountedCartMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

DiscountedItemBase (class in shop-
kit.discounts.basemodels), 38

DiscountedOrderBase (class in shop-
kit.discounts.basemodels), 38

DiscountedOrderItemBase (class in shop-
kit.discounts.basemodels), 38

DiscountedOrderItemMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

DiscountedOrderMixin (class in shop-
kit.discounts.advanced.models.order_models),
43

dispatch() (shopkit.core.listeners.StateChangeListener
method), 24

E
EmailingListener (class in shopkit.core.listeners), 23

F
FeaturedProductMixin (class in shop-

kit.featured.models), 47
form_valid() (shopkit.core.views.CartAddBase

method), 20
format_price() (in module shop-

kit.currency.simple.utils), 34
formset (shopkit.price.advanced.admin.PriceInline at-

tribute), 26
from_cart() (shopkit.core.models.CustomerOrderBase

class method), 17
from_cart() (shopkit.core.models.OrderBase class

method), 18
from_cartitem() (shopkit.core.models.OrderItemBase

class method), 18
from_cartitem() (shop-

kit.variations.models.VariationOrderItemMixin
class method), 36

from_request() (shopkit.core.models.CartBase class
method), 16

from_request() (shop-
kit.core.models.CustomerCartBase class
method), 17

G
generate_coupon_code() (shop-

kit.discounts.advanced.models.discount_models.CouponDiscountMixin
static method), 39

generate_invoice_number() (shop-
kit.core.basemodels.NumberedOrderBase
method), 14

generate_order_number() (shop-
kit.core.basemodels.NumberedOrderBase
method), 14

get_all_discounts() (shop-
kit.discounts.advanced.models.discount_models.DiscountBase
class method), 40

get_all_orders() (shop-
kit.core.basemodels.AbstractCustomerBase
method), 14

get_body_template_names() (shop-
kit.core.listeners.EmailingListener method),
23

get_cart_form_class() (shop-
kit.core.views.CartAddFormMixin method),
20

get_categories() (shop-
kit.category.basemodels.CategoryBase
class method), 31

get_cheapest() (shop-
kit.price.advanced.models.PriceBase class
method), 25

get_cheapest() (shop-
kit.shipping.advanced.models.shipping_models.ItemShippingMethodMixin
class method), 27

54 Index



django-shopkit Documentation, Release 0.1

get_cheapest() (shop-
kit.shipping.advanced.models.shipping_models.OrderShippingMethodMixin
class method), 27

get_confirmed_orders() (shop-
kit.core.basemodels.AbstractCustomerBase
method), 14

get_context_data() (shop-
kit.category.simple.views.CategoriesMixin
method), 32

get_context_data() (shop-
kit.core.listeners.EmailingListener method),
23

get_context_data() (shop-
kit.core.views.CartAddFormMixin method),
20

get_cost() (shopkit.shipping.advanced.models.shipping_models.ShippingMethodBase
method), 28

get_default_image() (shop-
kit.images.models.ImagesProductMixin
method), 37

get_default_variation() (shop-
kit.variations.models.OrderedProductVariationBase
class method), 35

get_default_variation() (shop-
kit.variations.models.ProductVariationBase
class method), 36

get_discount() (shop-
kit.discounts.advanced.models.discount_models.DiscountBase
method), 40

get_discount() (shop-
kit.discounts.advanced.models.discount_models.ItemDiscountAmountMixin
method), 40

get_discount() (shop-
kit.discounts.advanced.models.discount_models.ItemDiscountPercentageMixin
method), 40

get_discount() (shop-
kit.discounts.advanced.models.discount_models.OrderDiscountAmountMixin
method), 41

get_discount() (shop-
kit.discounts.advanced.models.discount_models.OrderDiscountPercentageMixin
method), 41

get_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_filters() (shopkit.core.utils.admin.LimitedAdminInlineMixin
method), 21

get_form_class() (shopkit.core.views.CartAddBase
method), 20

get_formset() (shopkit.core.utils.admin.LimitedAdminInlineMixin
method), 22

get_item() (shopkit.core.models.CartBase method), 16
get_item_discount() (shop-

kit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin
method), 42

get_item_discount() (shop-
kit.discounts.basemodels.DiscountedCartItemBase
method), 38

get_item_discount() (shop-
kit.discounts.basemodels.DiscountedOrderItemBase
method), 39

get_items() (shopkit.core.models.CartBase method), 16
get_items() (shopkit.core.models.OrderBase method),

18
get_language() (shop-

kit.core.listeners.TranslatedEmailingListener
method), 24

get_latest() (shopkit.core.models.OrderStateChangeBase
class method), 19

get_latest_order() (shop-
kit.core.basemodels.AbstractCustomerBase
method), 14

get_main_categories() (shop-
kit.category.basemodels.CategoryBase
class method), 31

get_main_categories() (shop-
kit.category.basemodels.MPTTCategoryBase
class method), 31

get_main_categories() (shop-
kit.category.basemodels.NestedCategoryBase
class method), 31

get_model_from_string() (in module shop-
kit.core.utils), 21

get_next_ordering() (shop-
kit.core.basemodels.OrderedInlineItemBase
static method), 15

get_order_discount() (shop-
kit.discounts.advanced.models.order_models.CalculatedOrderDiscountMixin
method), 42

get_order_discount() (shop-
kit.discounts.basemodels.DiscountedCartBase
method), 37

get_order_discount() (shop-
kit.discounts.basemodels.DiscountedOrderBase
method), 38

get_order_line() (shopkit.core.models.CartBase
method), 16

get_order_line() (shopkit.core.models.CartItemBase
method), 17

get_order_shipping_costs() (shop-
kit.shipping.basemodels.ShippedCartBase
method), 29

get_order_shipping_costs() (shop-
kit.shipping.basemodels.ShippedOrderBase
method), 30

get_parent() (shopkit.core.models.CartItemBase
method), 17

get_parent() (shopkit.core.models.OrderItemBase
method), 18

get_parent_list() (shop-
kit.category.basemodels.NestedCategoryBase
method), 31

get_piece_discount() (shop-
kit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin
method), 42

Index 55



django-shopkit Documentation, Release 0.1

get_piece_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_piece_price() (shopkit.core.models.CartItemBase
method), 17

get_piece_price() (shopkit.core.models.OrderItemBase
method), 18

get_piece_price_with_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_piece_price_without_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_price() (shopkit.core.basemodels.AbstractPricedItemBase
method), 14

get_price() (shopkit.core.models.CartBase method), 16
get_price() (shopkit.core.models.CartItemBase

method), 17
get_price() (shopkit.core.models.OrderBase method),

18
get_price() (shopkit.core.models.OrderItemBase

method), 19
get_price() (shopkit.discounts.basemodels.DiscountedItemBase

method), 38
get_price() (shopkit.price.models.PricedItemBase

method), 25
get_price() (shopkit.shipping.basemodels.ShippedItemBase

method), 30
get_price() (shopkit.vat.simple.models.VATItemBase

method), 33
get_price_with_vat() (shop-

kit.vat.simple.models.VATItemBase
method), 33

get_price_without_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_price_without_shipping() (shop-
kit.shipping.basemodels.ShippedItemBase
method), 30

get_price_without_vat() (shop-
kit.vat.simple.models.VATItemBase
method), 33

get_product_choices() (in module shopkit.core.forms),
20

get_products() (shop-
kit.category.basemodels.CategoryBase
method), 31

get_products() (shop-
kit.category.basemodels.MPTTCategoryBase
method), 31

get_products() (shop-
kit.category.basemodels.NestedCategoryBase
method), 31

get_query_set() (shop-
kit.core.managers.ActiveItemManager
method), 19

get_queryset() (shopkit.core.views.InShopViewMixin
method), 20

get_recent_shipping() (shop-
kit.shipping.models.ShippableCustomerMixin
method), 29

get_recipients() (shop-
kit.core.listeners.EmailingListener method),
23

get_related_ordering() (shop-
kit.core.basemodels.OrderedInlineItemBase
method), 15

get_related_ordering() (shop-
kit.images.models.OrderedProductImageBase
method), 37

get_related_ordering() (shop-
kit.variations.models.OrderedProductVariationBase
method), 35

get_sender() (shopkit.core.listeners.EmailingListener
method), 23

get_shipping_costs() (shop-
kit.shipping.basemodels.ShippedItemBase
method), 30

get_shipping_costs() (shop-
kit.shipping.basemodels.ShippedOrderItemBase
method), 30

get_shipping_method() (shop-
kit.shipping.advanced.models.order_models.AutomaticShippingMixin
method), 28

get_shipping_method() (shop-
kit.shipping.advanced.models.order_models.CheapestShippingMixin
method), 28

get_stocked_item() (shop-
kit.stock.models.StockedItemBase method),
44

get_subcategories() (shop-
kit.category.basemodels.MPTTCategoryBase
method), 31

get_subcategories() (shop-
kit.category.basemodels.NestedCategoryBase
method), 31

get_subject_template_names() (shop-
kit.core.listeners.EmailingListener method),
24

get_success_url() (shopkit.core.views.CartAddBase
method), 20

get_total_discount() (shop-
kit.discounts.basemodels.DiscountedCartBase
method), 38

get_total_discount() (shop-
kit.discounts.basemodels.DiscountedCartItemBase
method), 38

get_total_discount() (shop-
kit.discounts.basemodels.DiscountedItemBase
method), 38

get_total_discount() (shop-
kit.discounts.basemodels.DiscountedOrderBase
method), 38

get_total_discount() (shop-
kit.discounts.basemodels.DiscountedOrderItemBase
method), 39

56 Index



django-shopkit Documentation, Release 0.1

get_total_items() (shopkit.core.models.CartBase
method), 16

get_total_items() (shopkit.core.models.OrderBase
method), 18

get_total_price() (shopkit.core.models.CartBase
method), 16

get_total_price() (shopkit.core.models.CartItemBase
method), 17

get_total_price() (shopkit.core.models.OrderBase
method), 18

get_total_price() (shopkit.core.models.OrderItemBase
method), 19

get_total_shipping_costs() (shop-
kit.shipping.basemodels.ShippedCartBase
method), 29

get_total_shipping_costs() (shop-
kit.shipping.basemodels.ShippedItemBase
method), 30

get_total_shipping_costs() (shop-
kit.shipping.basemodels.ShippedOrderBase
method), 30

get_uses_left() (shop-
kit.discounts.advanced.models.discount_models.LimitedUseDiscountMixin
method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.CategoryDiscountMixin
class method), 39

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.CouponDiscountMixin
class method), 40

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.DateRangeDiscountMixin
class method), 40

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.DiscountBase
class method), 40

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.ItemDiscountAmountMixin
class method), 40

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.ItemDiscountPercentageMixin
class method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.LimitedUseDiscountMixin
class method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.ManyCategoryDiscountMixin
class method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.ManyProductDiscountMixin
class method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.OrderDiscountAmountMixin
class method), 41

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.OrderDiscountPercentageMixin
class method), 42

get_valid_discounts() (shop-
kit.discounts.advanced.models.discount_models.ProductDiscountMixin
class method), 42

get_valid_discounts() (shop-
kit.discounts.advanced.models.order_models.CalculatedDiscountMixin
method), 42

get_valid_discounts() (shop-
kit.discounts.advanced.models.order_models.CalculatedItemDiscountMixin
method), 42

get_valid_discounts() (shop-
kit.discounts.advanced.models.order_models.CalculatedOrderDiscountMixin
method), 43

get_valid_discounts() (shop-
kit.discounts.advanced.models.order_models.DiscountCouponItemMixin
method), 43

get_valid_discounts() (shop-
kit.discounts.advanced.models.order_models.DiscountCouponMixin
method), 43

get_valid_methods() (shop-
kit.shipping.advanced.models.shipping_models.ItemShippingMethodMixin
class method), 27

get_valid_methods() (shop-
kit.shipping.advanced.models.shipping_models.MinimumItemAmountShippingMixin
class method), 27

get_valid_methods() (shop-
kit.shipping.advanced.models.shipping_models.MinimumOrderAmountShippingMixin
class method), 27

get_valid_methods() (shop-
kit.shipping.advanced.models.shipping_models.OrderShippingMethodMixin
class method), 27

get_valid_methods() (shop-
kit.shipping.advanced.models.shipping_models.ShippingMethodBase
class method), 28

get_valid_prices() (shop-
kit.price.advanced.models.DateRangedPriceMixin
class method), 25

get_valid_prices() (shop-
kit.price.advanced.models.PriceBase class
method), 25

get_valid_prices() (shop-
kit.price.advanced.models.ProductPriceMixin
class method), 26

get_valid_prices() (shop-
kit.price.advanced.models.QuantifiedPriceMixin
class method), 26

get_vat() (shopkit.vat.simple.models.VATItemBase
method), 33

H
handler() (shopkit.core.listeners.EmailingListener

method), 24
handler() (shopkit.core.listeners.StateChangeListener

method), 24
handler() (shopkit.core.listeners.StateChangeLogger

method), 24
handler() (shopkit.core.listeners.TranslatedEmailingListener

method), 24

Index 57



django-shopkit Documentation, Release 0.1

I
ImagesProductAdminMixin (class in shop-

kit.images.admin), 36
ImagesProductMixin (class in shopkit.images.models),

37
InShopViewMixin (class in shopkit.core.views), 20
is_available() (shopkit.stock.advanced.models.StockedItemMixin

method), 46
is_available() (shopkit.stock.models.StockedCartItemBase

method), 44
is_available() (shopkit.stock.models.StockedItemBase

method), 44
is_available() (shopkit.stock.simple.models.StockedItemMixin

method), 45
is_valid() (shopkit.discounts.advanced.models.discount_models.DiscountBase

method), 40
is_valid() (shopkit.shipping.advanced.models.shipping_models.ShippingMethodBase

method), 28
ItemDiscountAmountMixin (class in shop-

kit.discounts.advanced.models.discount_models),
40

ItemDiscountPercentageMixin (class in shop-
kit.discounts.advanced.models.discount_models),
40

ItemShippingMethodMixin (class in shop-
kit.shipping.advanced.models.shipping_models),
27

L
limit_inline_choices() (shop-

kit.core.utils.admin.LimitedAdminInlineMixin
static method), 22

LimitedAdminInlineMixin (class in shop-
kit.core.utils.admin), 21

LimitedUseDiscountMixin (class in shop-
kit.discounts.advanced.models.discount_models),
41

Listener (class in shopkit.core.utils.listeners), 22

M
make_category() (shop-

kit.category.tests.CategoryTestMixinBase
method), 32

make_product() (shopkit.core.tests.CoreTestMixin
method), 22

ManyCategoryDiscountMixin (class in shop-
kit.discounts.advanced.models.discount_models),
41

ManyProductDiscountMixin (class in shop-
kit.discounts.advanced.models.discount_models),
41

MinimumItemAmountShippingMixin (class in shop-
kit.shipping.advanced.models.shipping_models),
27

MinimumOrderAmountShippingMixin (class in shop-
kit.shipping.advanced.models.shipping_models),
27

MinMaxDecimalField (class in shop-
kit.core.utils.fields), 21

MPTTCategoryBase (class in shop-
kit.category.basemodels), 31

N
NamedItemBase (class in shopkit.core.basemodels), 14
NestedCategoryBase (class in shop-

kit.category.basemodels), 31
NoStockAvailableException, 45
NumberedOrderBase (class in shop-

kit.core.basemodels), 14

O
OrderBase (class in shopkit.core.models), 17
OrderDiscountAmountMixin (class in shop-

kit.discounts.advanced.models.discount_models),
41

OrderDiscountPercentageMixin (class in shop-
kit.discounts.advanced.models.discount_models),
41

OrderedFeaturedProductMixin (class in shop-
kit.featured.models), 48

OrderedInlineItemBase (class in shop-
kit.core.basemodels), 15

OrderedItemBase (class in shopkit.core.basemodels),
15

OrderedProductImageBase (class in shop-
kit.images.models), 37

OrderedProductVariationBase (class in shop-
kit.variations.models), 35

OrderItemBase (class in shopkit.core.models), 18
OrderShippingMethodMixin (class in shop-

kit.shipping.advanced.models.shipping_models),
27

OrderStateChangeBase (class in shopkit.core.models),
19

P
PaymentBase (class in shopkit.core.models), 19
PercentageField (class in shopkit.core.utils.fields), 21
PersistentDiscountedItemBase (class in shop-

kit.discounts.advanced.models.order_models),
43

PersistentShippedItemBase (class in shop-
kit.shipping.advanced.models.order_models),
28

prepare_confirm() (shopkit.core.models.OrderBase
method), 18

prepare_confirm() (shop-
kit.stock.models.StockedOrderItemBase
method), 45

PriceBase (class in shopkit.price.advanced.models), 25
PricedItemAdminMixin (class in shopkit.core.admin),

13
PricedItemBase (class in shopkit.price.models), 25
PriceField (class in shopkit.currency.simple.fields), 34
PriceInline (class in shopkit.price.advanced.admin), 26

58 Index



django-shopkit Documentation, Release 0.1

PriceInlineFormSet (class in shop-
kit.price.advanced.forms), 26

ProductBase (class in shopkit.core.models), 19
ProductDiscountMixin (class in shop-

kit.discounts.advanced.models.discount_models),
42

ProductImageBase (class in shopkit.images.models), 37
ProductImageInline (class in shopkit.images.admin), 37
ProductPriceMixin (class in shop-

kit.price.advanced.models), 25
ProductVariationBase (class in shop-

kit.variations.models), 35
ProductVariationInline (class in shop-

kit.variations.admin), 35
PublishDateItemBase (class in shop-

kit.core.basemodels), 15

Q
QuantifiedPriceMixin (class in shop-

kit.price.advanced.models), 26
QuantizedItemBase (class in shopkit.core.basemodels),

15

R
register_use() (shopkit.discounts.advanced.models.discount_models.AccountedUseDiscountMixin

class method), 39
RelatedProductsMixin (class in shop-

kit.related.models), 47
remove_item() (shopkit.core.models.CartBase

method), 16

S
save() (shopkit.core.basemodels.NumberedOrderBase

method), 15
save() (shopkit.core.basemodels.OrderedInlineItemBase

method), 15
save() (shopkit.core.models.CustomerAddressBase

method), 17
save() (shopkit.core.models.OrderBase method), 18
setUp() (shopkit.category.tests.CategoryTestMixinBase

method), 32
setUp() (shopkit.core.tests.CoreTestMixin method), 22
setUp() (shopkit.price.advanced.tests.AdvancedPriceTestMixin

method), 26
ShippableCustomerMixin (class in shop-

kit.shipping.models), 29
ShippedCartBase (class in shop-

kit.shipping.basemodels), 29
ShippedCartItemBase (class in shop-

kit.shipping.basemodels), 29
ShippedCartItemMixin (class in shop-

kit.shipping.advanced.models.order_models),
28

ShippedCartMixin (class in shop-
kit.shipping.advanced.models.order_models),
28

ShippedItemBase (class in shop-
kit.shipping.basemodels), 29

ShippedOrderBase (class in shop-
kit.shipping.basemodels), 30

ShippedOrderItemBase (class in shop-
kit.shipping.basemodels), 30

ShippedOrderItemMixin (class in shop-
kit.shipping.advanced.models.order_models),
29

ShippedOrderMixin (class in shop-
kit.shipping.advanced.models.order_models),
29

ShippingMethodBase (class in shop-
kit.shipping.advanced.models.shipping_models),
28

shopkit.brands (module), 47
shopkit.brands.models (module), 47
shopkit.brands.settings (module), 47
shopkit.category (module), 30
shopkit.category.advanced (module), 32
shopkit.category.advanced.models (module), 33
shopkit.category.advanced.tests (module), 33
shopkit.category.advanced.views (module), 33
shopkit.category.basemodels (module), 31
shopkit.category.settings (module), 32
shopkit.category.simple (module), 32
shopkit.category.simple.models (module), 32
shopkit.category.simple.tests (module), 32
shopkit.category.simple.views (module), 32
shopkit.category.tests (module), 32
shopkit.configurable (module), 34
shopkit.configurable.advanced (module), 35
shopkit.configurable.advanced.models (module), 35
shopkit.configurable.advanced.settings (module), 35
shopkit.configurable.advanced.views (module), 35
shopkit.configurable.simple (module), 35
shopkit.configurable.simple.models (module), 35
shopkit.configurable.simple.settings (module), 35
shopkit.configurable.simple.views (module), 35
shopkit.core (module), 13
shopkit.core.admin (module), 13
shopkit.core.basemodels (module), 14
shopkit.core.context_processors (module), 22
shopkit.core.exceptions (module), 23
shopkit.core.forms (module), 20
shopkit.core.listeners (module), 23
shopkit.core.managers (module), 19
shopkit.core.models (module), 16
shopkit.core.settings (module), 21
shopkit.core.signals (module), 23
shopkit.core.tests (module), 22
shopkit.core.utils (module), 21
shopkit.core.utils.admin (module), 21
shopkit.core.utils.fields (module), 21
shopkit.core.utils.listeners (module), 22
shopkit.core.views (module), 19
shopkit.currency (module), 34
shopkit.currency.advanced (module), 34
shopkit.currency.advanced.models (module), 34
shopkit.currency.advanced.settings (module), 34

Index 59



django-shopkit Documentation, Release 0.1

shopkit.currency.advanced.views (module), 34
shopkit.currency.simple (module), 34
shopkit.currency.simple.fields (module), 34
shopkit.currency.simple.settings (module), 34
shopkit.currency.simple.utils (module), 34
shopkit.discounts (module), 37
shopkit.discounts.advanced (module), 39
shopkit.discounts.advanced.admin (module), 39
shopkit.discounts.advanced.models (module), 39
shopkit.discounts.advanced.models.discount_models

(module), 39
shopkit.discounts.advanced.models.order_models

(module), 42
shopkit.discounts.basemodels (module), 37
shopkit.discounts.settings (module), 39
shopkit.featured (module), 47
shopkit.featured.models (module), 47
shopkit.images (module), 36
shopkit.images.admin (module), 36
shopkit.images.models (module), 37
shopkit.images.settings (module), 37
shopkit.price (module), 24
shopkit.price.advanced (module), 25
shopkit.price.advanced.admin (module), 26
shopkit.price.advanced.forms (module), 26
shopkit.price.advanced.models (module), 25
shopkit.price.advanced.settings (module), 26
shopkit.price.advanced.tests (module), 26
shopkit.price.models (module), 25
shopkit.price.simple (module), 25
shopkit.price.simple.models (module), 25
shopkit.related (module), 46
shopkit.related.models (module), 47
shopkit.related.settings (module), 47
shopkit.shipping (module), 27
shopkit.shipping.advanced (module), 27
shopkit.shipping.advanced.admin (module), 29
shopkit.shipping.advanced.models (module), 27
shopkit.shipping.advanced.models.order_models

(module), 28
shopkit.shipping.advanced.models.shipping_models

(module), 27
shopkit.shipping.advanced.settings (module), 29
shopkit.shipping.basemodels (module), 29
shopkit.shipping.models (module), 29
shopkit.shipping.settings (module), 29
shopkit.stock (module), 43
shopkit.stock.advanced (module), 46
shopkit.stock.advanced.models (module), 46
shopkit.stock.advanced.settings (module), 46
shopkit.stock.advanced.tests (module), 46
shopkit.stock.exceptions (module), 45
shopkit.stock.models (module), 44
shopkit.stock.simple (module), 45
shopkit.stock.simple.models (module), 45
shopkit.stock.simple.settings (module), 45
shopkit.variations (module), 35
shopkit.variations.admin (module), 35

shopkit.variations.models (module), 35
shopkit.variations.settings (module), 36
shopkit.vat (module), 33
shopkit.vat.advanced (module), 33
shopkit.vat.advanced.models (module), 34
shopkit.vat.advanced.settings (module), 34
shopkit.vat.advanced.views (module), 34
shopkit.vat.simple (module), 33
shopkit.vat.simple.models (module), 33
shopkit.vat.simple.settings (module), 33
shopkit.vat.simple.views (module), 33
ShopKitExceptionBase, 23
StateChangeListener (class in shopkit.core.listeners),

24
StateChangeLogger (class in shopkit.core.listeners), 24
StockedCartBase (class in shopkit.stock.models), 44
StockedCartItemBase (class in shopkit.stock.models),

44
StockedCartItemMixin (class in shop-

kit.stock.advanced.models), 46
StockedCartItemMixin (class in shop-

kit.stock.simple.models), 45
StockedCartMixin (class in shop-

kit.stock.advanced.models), 46
StockedCartMixin (class in shop-

kit.stock.simple.models), 45
StockedItemBase (class in shopkit.stock.models), 44
StockedItemMixin (class in shop-

kit.stock.advanced.models), 46
StockedItemMixin (class in shop-

kit.stock.simple.models), 45
StockedOrderBase (class in shopkit.stock.models), 44
StockedOrderItemBase (class in shopkit.stock.models),

44
StockedOrderItemMixin (class in shop-

kit.stock.advanced.models), 46
StockedOrderItemMixin (class in shop-

kit.stock.simple.models), 45
StockedOrderMixin (class in shop-

kit.stock.advanced.models), 46
StockedOrderMixin (class in shop-

kit.stock.simple.models), 45

T
test_basic_category() (shop-

kit.category.tests.CategoryTestMixinBase
method), 32

test_basic_product() (shopkit.core.tests.CoreTestMixin
method), 23

test_cart() (shopkit.core.tests.CoreTestMixin method),
23

test_cartitem_from_product() (shop-
kit.core.tests.CoreTestMixin method),
23

test_create_usercustomer() (shop-
kit.core.tests.CoreTestMixin method),
23

60 Index



django-shopkit Documentation, Release 0.1

test_order() (shopkit.core.tests.CoreTestMixin
method), 23

test_orderitem_from_cartitem() (shop-
kit.core.tests.CoreTestMixin method),
23

test_orderstate_change_tracking() (shop-
kit.core.tests.CoreTestMixin method),
23

to_request() (shopkit.core.models.CartBase method),
16

TranslatedEmailingListener (class in shop-
kit.core.listeners), 24

U
update_discount() (shop-

kit.discounts.advanced.models.order_models.PersistentDiscountedItemBase
method), 43

update_discount() (shop-
kit.discounts.basemodels.DiscountedOrderBase
method), 38

update_discount() (shop-
kit.discounts.basemodels.DiscountedOrderItemBase
method), 39

update_shipping() (shop-
kit.shipping.advanced.models.order_models.PersistentShippedItemBase
method), 28

update_shipping() (shop-
kit.shipping.basemodels.ShippedOrderBase
method), 30

update_shipping() (shop-
kit.shipping.basemodels.ShippedOrderItemBase
method), 30

UserCustomerBase (class in shopkit.core.models), 19

V
VariationCartItemMixin (class in shop-

kit.variations.models), 36
VariationItemBase (class in shopkit.variations.models),

36
VariationOrderItemMixin (class in shop-

kit.variations.models), 36
VATItemBase (class in shopkit.vat.simple.models), 33

Index 61


	Webshops for perfectionists with deadlines
	Project status
	Compatibility
	Dependencies
	Contents
	Getting started
	TODO List
	Writing extensions
	Components

	Indices and tables
	Python Module Index

